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We show that, under the conditions known to imply the validity of the Parisi formula, if the
generic Sherrington–Kirkpatrick Hamiltonian contains a p-spin term then the Ghirlanda–
Guerra identities for the pth power of the overlap hold in a strong sense without averaging.
This implies strong version of the extended Ghirlanda–Guerra identities for mixed p-spin
models than contain terms for all even p � 2 and p = 1.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous montrons que sous les conditions connues pour impliquer la validité de la formule
de Parisi, si l’Hamiltonien du modè le générique de Sherrington–Kirkpatrick Hamiltonien
contient un « Hamiltonien de p-spin » alors les identités de Ghirlanda–Guerra pour la
puissance p des recouvrements sont valides dans un sens fort (et pas seulement en
moyenne sur les parametres).

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main result

A generic mixed p-spin Hamiltonian H N (σ ) indexed by spin configurations σ ∈ {−1,+1}N is defined as a linear combi-
nation

HN(σ ) =
∑
p�1

βp H p(σ ) (1)

of p-spin Sherrington–Kirkpatrick Hamiltonians

H p(σ ) = 1

N(p−1)/2

∑
1�i1,...,ip�N

gi1,...,ip σi1 . . . σip (2)

where (gi1,...,ip ) are i.i.d. standard Gaussian random variables, also independent for all p � 1. For simplicity of notation, we
will keep the dependence of H p on N implicit. If a model involves an external field parameter h ∈ R then the (random)
Gibbs measure on {−1,+1}N corresponding to the Hamiltonian HN is defined by
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G N(σ ) = 1

ZN
exp

(
HN(σ ) + h

∑
i�N

σi

)
(3)

where ZN is the normalizing factor called the partition function. As usual, we will denote by 〈·〉 the expectation with
respect to the product Gibbs measure G⊗∞

N . One of the most important properties of the Gibbs measure G N was discovered
by Ghirlanda and Guerra in [2] who showed that on average over some small perturbation of the parameters (βp) in (1)
the annealed product Gibbs measure satisfies a family of distributional identities which are now called the Ghirlanda–
Guerra identities. A more convenient version of this result proved in [7] can be formulated as follows. There exists a small
perturbation (βN,p) of the parameters in (1) such that all βN,p → βp and such that for all p � 1, n � 2 and any function
f = f (σ 1, . . . ,σ n) : ({−1,+1}N )n → [−1,1],

lim
N→∞

∣∣∣∣∣E〈
f R p

1,n+1

〉 − 1

n
E〈 f 〉E〈

R p
1,2

〉 − 1

n

n∑
l=2

E
〈
f R p

1,l

〉∣∣∣∣∣ = 0 (4)

where 〈·〉 is now the Gibbs average corresponding to the Hamiltonian (1) with perturbed parameters (βN,p) and Rl,l′ =
N−1 ∑

i�N σ l
i σ

l′
i is the overlap of configurations σ l and σ l′ . Of course, the ultimate goal would be to show that (4) holds

without perturbing the parameters (βp) which would mean that the joint distribution of the overlaps (Rl,l′ )l,l′�1 under the
annealed product Gibbs measure EG⊗∞

N asymptotically satisfies the following distributional identities (up to symmetry con-
siderations): for any n � 2, conditionally on (Rl,l′ )1�l<l′�n the law of R1,n+1 is given by the mixture n−1μ + n−1 ∑n

l=2 δR1,l

where μ is the law of R1,2. Toward this goal, a stronger version of (4) for the original Hamiltonian (1) without any per-
turbation of parameters was proved for p = 1 in [1] under the additional assumption that β1 	= 0 and a non-restrictive
assumption on the limit of the free energy F N = N−1

E log ZN . Here we will prove the same result for all p under the
assumptions and as a direct consequence of the seminal work of Talagrand in [6] where the validity of the Parisi formula
was proved. Namely, from now on we will assume that the sum in (1) is taken over p = 1 and even p � 2. In this case, it
was proved in [6] that the limit of the free energy

lim
N→∞ F N(β) = P (β) (5)

exists and is given by the Parisi formula P (β) discovered in [4]. The exact definition of P (β) will not be important to us
and the only nontrivial property that we will use is its differentiability in each coordinate βp which was proved in [5] (see
also [3]).

Theorem 1.1. For p = 1 and for all even p � 2,

lim
N→∞

1

N
E

〈∣∣H p(σ ) − E
〈
H p(σ )

〉∣∣〉 = 0. (6)

If βp 	= 0 then (6) implies (4) by the usual integration by parts. In particular, if βp 	= 0 for p = 1 and all even p � 2,

the positivity principle of Talagrand proved in [8] implies the strong version of the extended Ghirlanda–Guerra identities
without any perturbation of the parameters.

Remark. We will see that the proof does not depend on the specific form of the Hamiltonian (1) and the result can be
formulated in more generality. Namely, given a sequence of random measures νN on some measurable space (Σ, S) and a
sequence of random processes AN indexed by σ ∈ Σ , consider a sequence of Gibbs’ measures G N defined by the change of
density

dG N(σ ) = Z−1
N exp

(
xAN(σ )

)
dνN (σ ).

Let ψN (x) = N−1 log ZN and F N (x) = EψN(x). Suppose that E|ψN(x) − F N (x)| → 0 and F N (x) → P (x) in some neighborhood
of x0, and suppose that the limit P (x) is differentiable at x0. Then

lim
N→∞

1

N
E

〈∣∣AN(σ ) − E
〈
AN(σ )

〉
x0

∣∣〉
x0

= 0, (7)

assuming some measurability and integrability conditions on AN and νN which will be clear from the proof and are usually
trivially satisfied. In Theorem 1.1 we simply appeal to the results in [5] and [6].

Proof of Theorem 1.1. It has been observed for a long time that (see, for example, [1])

lim
1

E
∣∣〈H p(σ )

〉 − E
〈
H p(σ )

〉∣∣ = 0.

N→∞ N
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This is where one uses the fact that E|ψN − F N | → 0, which is well known for p-spin models. It remains to prove that

lim
N→∞

1

N
E

〈∣∣H p(σ ) − 〈
H p(σ )

〉∣∣〉 = 0. (8)

This was proved in [1] for p = 1, but here we will show how this can be obtained as a direct consequence of (5) for all p.
Let 〈·〉x denote the Gibbs average corresponding to the Hamiltonian (1) where βp has been replaced by x. Consider β ′

p > βp

and let δ = β ′
p − βp . We start with the following obvious equation,

β ′
p∫

βp

E
〈∣∣H p

(
σ 1) − H p

(
σ 2)∣∣〉

x dx = δ E
〈∣∣H p

(
σ 1) − H p

(
σ 2)∣∣〉

βp
+

β ′
p∫

βp

x∫
βp

∂

∂t
E

〈∣∣H p
(
σ 1) − H p

(
σ 2)∣∣〉

t dt dx. (9)

Since ∣∣∣∣ ∂

∂t
E

〈∣∣H p
(
σ 1) − H p

(
σ 2)∣∣〉

t

∣∣∣∣ = ∣∣E〈∣∣H p
(
σ 1) − H p

(
σ 2)∣∣(H p

(
σ 1) + H p

(
σ 2) − 2H p

(
σ 3))〉

t

∣∣
� 2E

〈(
H p

(
σ 1) − H p

(
σ 2))2〉

t � 8E
〈(

H p(σ ) − 〈
H p(σ )

〉
t

)2〉
t

Eq. (9) implies

E
〈∣∣H p

(
σ 1) − H p

(
σ 2)∣∣〉

βp
� 1

δ

β ′
p∫

βp

E
〈∣∣H p

(
σ 1) − H p

(
σ 2)∣∣〉

x dx + 8

δ

β ′
p∫

βp

x∫
βp

E
〈(

H p(σ ) − 〈
H p(σ )

〉
t

)2〉
t dt dx

� 2

δ

β ′
p∫

βp

E
〈∣∣H p(σ ) − 〈

H p(σ )
〉
x

∣∣〉
x dx + 8

β ′
p∫

βp

E
〈(

H p(σ ) − 〈
H p(σ )

〉
t

)2〉
t dt

� 2

(
1

δ

β ′
p∫

βp

E
〈(

H p(σ ) − 〈
H p(σ )

〉
x

)2〉
x dx

)1/2

+ 8

β ′
p∫

βp

E
〈(

H p(σ ) − 〈
H p(σ )

〉
x

)2〉
x dx.

Therefore, if we denote

	N = 1

N

β ′
p∫

βp

E
〈(

H p(σ ) − 〈
H p(σ )

〉
x

)2〉
x dx

we showed that

1

N
E

〈∣∣H p(σ ) − 〈
H p(σ )

〉∣∣〉 � 1

N
E

〈∣∣H p
(
σ 1) − H p

(
σ 2)∣∣〉 � 2

√
	N

Nδ
+ 8	N . (10)

If for a moment we think of F N = F N (x) as a function of x only then

F ′
N(x) = 1

N
E

〈
H p(σ )

〉
x and F ′′

N(x) = 1

N
E

〈(
H p(σ ) − 〈

H p(σ )
〉
x

)2〉
x

so that 	N = F ′
N (β ′

p) − F ′
N (βp). Since F N (x) is convex, for any γ > 0,

	N = F ′
N

(
β ′

p

) − F ′
N(βp) �

F N(β ′
p + γ ) − F N(β ′

p)

γ
− F N(βp) − F N(βp − γ )

γ

and, therefore, Eqs. (10) and (5) now imply

lim sup
N→∞

1

N
E

〈∣∣H p(σ ) − 〈
H p(σ )

〉∣∣〉 � 8

(
P (β ′

p + γ ) − P (β ′
p)

γ
− P (βp) − P (βp − γ )

γ

)

where again we write P = P (x) as a function of x only. Letting β ′
p → βp first and then letting γ → 0 and using that P (x) is

differentiable proves the result. �
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