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Let θ be a real number satisfying 1 < θ < 2, m a positive rational integer and Bm(θ) the set
of polynomials with coefficients in {0,±1, . . . ,±m}, evaluated at θ . We prove that Bm(θ)

is everywhere dense when 0 ∈ B ′
m(θ), where B ′

m(θ) is the derivative set of Bm(θ). We also
show that if B ′

m(θ) ∩ [0, 1
θ

∏
k�0(1 − 1

θ2k )] = ∅, then Bm(θ) is discrete.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soient θ un nombre réel satisfaisant 1 < θ < 2, m un entier rationnel positif et Bm(θ)

l’ensemble des réels P (θ) pour P décrivant les polynômes à coefficients dans {0,±1, . . . ,

±m}. On montre que Bm(θ) est partout dense lorsque 0 est un élément de l’ensemble
dérivé B ′

m(θ) de Bm(θ). On prouve également que si B ′
m(θ) ∩ [0, 1

θ

∏
k�0(1 − 1

θ2k )] = ∅,

alors Bm(θ) est discret.
© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We continue the investigation of the distribution in the real line R of the elements of the sets

B = Bm(θ) := {
ε0 + ε1θ + · · · + εnθ

n, n ∈ N, εk ∈ {−m, . . . ,0, . . . ,m}},
where θ is a real number satisfying 1 < θ < 2, and m runs through the set N of positive rational integers. The study of
B has been initiated by Erdős, Joó and Komornik in [3], and followed by some authors (see for instance the references in
[7]). A result of Bugeaud [2] asserts that all sets Bm(θ) are uniformly discrete if and only if θ is a Pisot number. A Pisot
number is a real algebraic integer greater than 1, whose other conjugates over the field of the rationals Q are of modulus
less than 1. Recall also that a subset X of R is uniformly discrete if the usual distance between two distinct elements of X
is greater than a positive constant depending only on X ; a uniformly discrete set is discrete, that is a set with no finite limit
point. Notice also that Bm(θ) is uniformly discrete if and only if the quantity β = βm(θ) := inf{b, b ∈ Bm(θ), b > 0} satisfies
β2m(θ) > 0, or equivalently if and only if 0 /∈ B ′

2m(θ), where B ′ = B ′
m(θ) is the set of limit points of Bm(θ). In [5] Erdős and

Komornik considered the general case where the real number θ is not necessary less than 2. A corollary of one of their

results asserts that if θ is not a Pisot number and θ ∈ ]1, 1+√
5

2 ] (respectively, and θ ∈ ] 1+√
5

2 ,2[), then B1(θ) is not discrete
(respectively, then B2(θ) is not discrete and β3(θ) = 0). A natural question arises immediately: How can be distributed in R

the elements of B, when B is not discrete? The following result gives a partial answer to this problem:
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Theorem 1. The set Bm(θ) is everywhere dense if and only if βm(θ) = 0.

Combined with the above mentioned result of Erdős and Komornick, Theorem 1 yields:

Corollary. If θ is not a Pisot number, m � 2 and θ ∈ ]1, 1+√
5

2 ] (respectively, m � 3 and θ ∈ ] 1+√
5

2 ,2[), then Bm(θ) is everywhere
dense.

Recall that the question whether there is a non-Pisot number, say again θ, satisfying β1(θ) > 0, has been cited in [4]
and remains open. From the above we also see that a possible way to show that all sets Bm(θ) are everywhere dense when
θ is not a Pisot number, is to prove the implication

B ′
m(θ) �= ∅ ⇒ βm(θ) = 0, (1)

for m = 1 and θ ∈ ]1, 1+√
5

2 ] (respectively, for m ∈ {1,2} and θ ∈ ] 1+√
5

2 ,2[). In [1] Borwein and Hare have shown that Bm(θ)

is discrete when Bm(θ) ∩ [0, m
θ−1 ] is finite, and the author [6] has proved that the bound m

θ−1 may be replaced by the

(non-optimal) constant 1
θ+1 without affecting the discreteness property of Bm(θ). The second aim of this note is to improve

this last result:

Theorem 2. The following propositions are equivalent:

(i) The set Bm(θ) is discrete.
(ii) The set B ′

m(θ) ∩ [0, 1
θ

∏
k�0(1 − 1

θ2k )] is empty.

2. The proofs

Proof of Theorem 1. Trivially we have β = 0 when B is dense in R. To make clear the proof of the converse we shall use
the next result.

Lemma. If β = 0, then the following properties hold:

(i) For any ε > 0 there exists b ∈ B such that ε < b � θε.

(ii) Each element of B is a limit point of B from both sides.

Proof. (i) Since β = 0, there is b0 ∈ B such that 0 < b0 < ε. Let N be the greatest rational integer such that θ Nb0 � ε. Then,
ε < θ N+1b0, ε < θ N+1b0 � θε and Lemma (i) follows, as N + 1 ∈ N.

(ii) Since β ∈ B ′ and B = −B , there is a decreasing sequence, say (bk)k∈N , of distinct elements of B such that limk→∞ bk =
0. Let ε0 + ε1θ + · · · + εnθn, where εi ∈ {−m, . . . ,0, . . . ,m} and n ∈ N, be a representation of an element b ∈ B. Then,
θn+1bk + b ∈ B and the sequence (θn+1bk + b)k∈N is decreasing to b. Considering the sequence (−θn+1bk + b)k∈N, we see
that b is a left-hand limit point of B. �

Let us return to the proof of Theorem 1, and assume on the contrary that β = 0 and B is not everywhere dense. Then,
there exist positive numbers, say t0 and δ, such that [t0, t0 + δ] ∩ B = ∅, as B = −B and 0 ∈ B ′. Let P = P (δ) := {t ∈ R, t >

0, [t, t + δ] ∩ B = ∅}. Then, t0 ∈ P and so P �= ∅. We shall obtain a contradiction by considering the quantity α := inf P . First
suppose α ∈ P , and let

x ∈
]

max

(
α − δ

2
,0

)
,α

[
. (2)

Then, 0 < x < α and [x, x+δ]∩ B �= ∅. Let b := ε0 +ε1θ +· · ·+εnθn , where εi ∈ {−m, . . . ,0, . . . ,m} and n ∈ N, be an element
of [x, x + δ]. Then, b ∈ B, and from the relations x � b � x + δ < α + δ and [α,α + δ] ∩ B = ∅, we have

b ∈ [x,α[. (3)

Since θ < 2, Lemma (i) asserts that there is b′ ∈ B ∩ ] α−x
θn+1 ,2 α−x

θn+1 [, and by (2) we deduce that α − x < b′θn+1 < 2(α − x) < δ.

The last inequalities together with (3) yield α < b′θn+1 + b < α + δ, and these relations lead to a contradiction, since
b′θn+1 + b ∈ B and B ∩ ]α,α + δ[= ∅. Now, assume that α /∈ P . Then, [α,α + δ] ∩ B �= ∅ and there is a decreasing sequence,
say (tk)k∈N, of distinct elements of P such that limk→∞ tk = α and tk � α + δ for all k ∈ N. Let b ∈ [α,α + δ] ∩ B. It follows
by the relations [tk, tk + δ] ∩ B = ∅ and α < tk � α + δ < tk + δ that

α � b < tk, ∀k ∈ N. (4)
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Letting k tend to infinity in (4), we obtain α = b and so [α,α + δ] ∩ B = {α}; this last equality leads also to a contradiction
because by Lemma (ii) the number α is a right-hand limit point of B and so the set [α,α + δ] ∩ B contains certainly more
than one element. �
Proof of the Corollary. Suppose that θ is not a Pisot number and θ ∈ ] 1+√

5
2 ,2[ (respectively, and θ ∈ ]1, 1+√

5
2 ]). Then,

β3(θ) = 0 (respectively, B1(θ) is not discrete and so β2(θ) = 0 (this last equality has also been proved in [4])) and the result
follows immediately by Theorem 1, since Bm(θ) ⊂ Bm+1(θ) for all m ∈ N. �
Proof of Theorem 2. Set l = lm(θ) := inf{b′, b′ ∈ B ′ ∩ [0,∞[} and � := 1

θ

∏
k�0(1 − 1

θ2k ). It is clear that B ′ ∩ [0, �] = ∅ when

B is discrete. Now, assume that B is not discrete. Then, Theorem 3 of [6] asserts that l � 1
θ+1 . Let (cn)n�0 be the sequence

defined by c0 = 1 and

cn =
∏

0�k�n−1

(
θ2k − 1

)
for n ∈ N.

Then, cn+1

θ2n+1 = (θ2n −1)cn

θ2n+1 < cn

θ2n +1
< cn

θ2n ,

cn

θ2n = 1

θ

∏
0�k�n−1

(
1 − 1

θ2k

)

and so ( cn

θ2n )n�0 is decreasing to �. To show the inequality l � �, we shall prove that the propositions

B ′ ∩
[

cn

θ2n + 1
,

cn

θ2n

]
�= ∅ ⇒ B ′ ∩

[
0,

cn

θ2n + 1

]
�= ∅ (5)

and

B ′ ∩
[

cn+1

θ2n+1 ,
cn

θ2n + 1

]
�= ∅ ⇒ B ′ ∩

[
0,

cn+1

θ2n+1

]
�= ∅ (6)

are true for all non-negative rational integers n. Indeed, if l > �, then there is n0 ∈ N such that
cn0

θ2n0 < l. Let again n0 be the

smallest rational integer satisfying the last inequality. Then, from the relation l � 1
θ+1 < 1

θ
= c0

θ20 , we have n0 � 1, l ∈ ] cn0

θ2n0 ,

cn0−1

θ2n0−1 ]∩ B ′ and so by (5) (respectively, by (6)) we obtain a contradiction when l >
cn0−1

θ2n0−1 +1
(respectively, when l � cn0−1

θ2n0−1 +1
),

since l is the smallest limit point of B . To show the relation (5) we consider the real function f (x) = fn(x) := −θ2n
x + cn ,

where n ∈ N ∪ {0}. It is clear that f is injective and continuous, and

f

([
cn

θ2n + 1
,

cn

θ2n

])
⊂

[
0,

cn

θ2n + 1

]
. (7)

Using the equality cn+1 = cn(θ2n − 1), a simple induction shows that cn is a monic polynomial in θ of degree 2n − 1 and
with coefficients in {−1,1}; thus cn = θ2n−1 ± θ2n−2 ± · · · ± 1, ∀n ∈ N, and so

± f (B) ⊂ B. (8)

Hence, if (ak)k∈N is a sequence of distinct elements of B such that limk→∞ ak = a and a ∈ [ cn

θ2n +1
, cn

θ2n ], then the equality

limk→∞ f (ak) = f (a) together with (7) and (8) give f (a) ∈ B ′ ∩ [0, cn

θ2n +1
], and so the implication (5) is true. To prove the

relation (6) notice first that we may suppose β1(θ) > 0, as 0 ∈ B ′
m(θ) for all m ∈ N when β1(θ) = 0. It follows by Remark 2

of [2] that θ is a root of a non-zero polynomial with coefficients in {−1,0,1}; thus θ is an algebraic integer and B is
contained in the ring of integers of the field Q(θ). Now, set g := − fn+1. Then,

g

(]
N∑

k=1

cn+1

θ2n+1k
,

N+1∑
k=1

cn+1

θ2n+1k

])
⊂

]
N−1∑
k=1

cn+1

θ2n+1k
,

N∑
k=1

cn+1

θ2n+1k

]
,

where N runs through N (by convention
∑0

k=1
cn+1

θ2n+1k
:= 0). Notice also that for each x ∈ ] cn+1

θ2n+1 , cn

θ2n +1
[ there exists a unique

positive rational integer, say N(x), such that

N(x)∑ cn+1

θ2n+1k
< x �

N(x)+1∑ cn+1

θ2n+1k
,

k=1 k=1
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because
∑

k�1
cn+1

θ2n+1k
= cn+1

θ2n+1 −1
= cn+1

(θ2n −1)(θ2n +1)
= cn

θ2n +1
. Consequently, if t ∈ ] cn+1

θ2n+1 , cn

θ2n +1
[ and (tk)k∈N is a sequence of

distinct elements of B satisfying limk→∞ tk = t , then limk→∞ g(tk) = g(t), and so g(t) ∈ B ′ (recall that g is injective and
continuous, and by (8) we have g(B) ⊂ B). Hence, g(t) ∈ B ′ ∩ ]∑N(t)−1

k=1
cn+1

θ2n+1k
,
∑N(t)

k=1
cn+1

θ2n+1k
]. Iterating the map g we deduce

that g(N(t))(t) ∈ B ′ ∩ ]0,
cn+1

θ2n+1 ], and so the implication (6) is true when B ′ ∩ [ cn+1

θ2n+1 , cn

θ2n +1
] �= { cn

θ2n +1
}. Finally, let us consider

the case where B ′ ∩ [ cn+1

θ2n+1 , cn

θ2n +1
] is reduced to the singleton { cn

θ2n +1
}. Notice first by (7) and (8) that cn

θ2n +1
is a left-hand

limit point of B . Furthermore, if (sk)k∈N is a sequence of distinct elements of B ∩] cn+1

θ2n+1 , cn

θ2n +1
[ such that limk→∞ sk = cn

θ2n +1
,

then by the above for each k ∈ N there is Nk := N(sk) ∈ N such that

g(Nk)(sk) ∈
]

0,
cn+1

θ2n+1

]
∩ B;

thus if the set E := {g(Nk)(sk), k ∈ N} is not finite, then B has a limit point which belongs to the interval [0,
cn+1

θ2n+1 ], and

so (6) is true. Now, assume on the contrary that E is finite and let b ∈ B ∩ ]0,
cn+1

θ2n+1 ] such that b = g(Nk)(sk) for infinitely

many k. Writing g(Nk)(sk) explicitly, the last equality gives

b = γ Nk sk − γ (Nk−1)cn+1 − · · · − γ cn+1 − cn+1, (9)

where γ := θ2n+1
. Hence, if σ is an embedding of Q(θ) into the complex field C, sending θ to a conjugate over Q of

modulus at least 1, then (9) implies

σ(b) = σ(γ )Nkσ(sk) − σ(cn+1)
σ (γ )Nk − 1

σ(γ ) − 1
,

σ (sk) = σ(b)

σ (γ )Nk
+ σ(cn+1)

1 − 1
σ (γ )Nk

σ(γ ) − 1

(σ(γ ) /∈ {0,1} because θ > 1), and so

∣∣σ(sk)
∣∣ �

∣∣σ(b)
∣∣ + 2

∣∣∣∣ σ(cn+1)

σ (γ ) − 1

∣∣∣∣. (10)

Notice also that if ε0 +ε1θ +· · ·+εdθ
d is a representation in B of some sk , and if τ is an embedding of Q(θ) into C sending

θ to a conjugate of modulus less than 1, then

∣∣τ (sk)
∣∣ � m

d∑
k=0

∣∣τ (θ)
∣∣k

<
m

1 − |τ (θ)| . (11)

It follows by (10) and (11) that the conjugates of the integer sk of the field Q(θ) are bounded; thus sk takes at most a finite
number of values and this is absurd, as {sk , k ∈ N} is not finite. �
Remark 1. By the same method as in the proof of Theorem 2, we easily obtain l /∈ ] Pn

θn+1 , Pn
θn−1 [, where n ∈ N, Pn =

εn−1θ
n−1 + εn−2θ

n−2 + · · · + ε0 and εi ∈ {−m, . . . ,0, . . . ,m}. I am not able to prove (or disprove) the inclusion: ]0,1[ ⊂⋃
n∈N

] Pn
θn+1 , Pn

θn−1 [, which implies (1).

Remark 2. With the notation of the proof of Theorem 2, suppose β �= 0. Then, each finite sum, say s, of the form ε1
θ

+
· · · + εN

θ N , where εi ∈ {−m, . . . ,0, . . . ,m} and N ∈ N, does not belong to B ′ . Indeed, if (bk)k∈N is a sequence of distinct

elements of B such that limk→∞ bk = s, then θ N bk − (ε1θ
N−1 + · · · + εN ) ∈ B and limk→∞ θ N bk − ε1θ

N−1 − · · · − εN = 0.
In particular for m = 1 we have L1(θ) := sup{b′,b′ ∈ B ′

1(θ) ∩ [0,1]} < 1, since by Remark 2 of [2] there are N ∈ N and
εi ∈ {−1,0,1} such that 1 = ε1

θ
+ · · · + εN

θ N ; thus 0 < β1(θ) � l1(θ) � � < 1
θ

< L1(θ) < 1.
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