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RESUME

Soient 6 un nombre réel satisfaisant 1 < < 2, m un entier rationnel positif et Bp(6)
I'ensemble des réels P(9) pour P décrivant les polyndomes a coefficients dans {0, £1, ...,
+m}. On montre que B (0) est partout dense lorsque O est un élément de I'ensemble
dérivé B}, (6) de Bn(9). On prouve également que si BJ,(6) N[O, %Hl<>o(1 - 9%)] =0,
alors By (0) est discret.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction
We continue the investigation of the distribution in the real line R of the elements of the sets

B=Bn(®):={eo+¢e10+---+e0", neN, g e{—m,...,0,...,m}},

where 6 is a real number satisfying 1 <6 < 2, and m runs through the set N of positive rational integers. The study of
B has been initiated by Erdoés, Jo6 and Komornik in [3], and followed by some authors (see for instance the references in
[7]). A result of Bugeaud [2] asserts that all sets B;(#) are uniformly discrete if and only if 6 is a Pisot number. A Pisot
number is a real algebraic integer greater than 1, whose other conjugates over the field of the rationals Q are of modulus
less than 1. Recall also that a subset X of R is uniformly discrete if the usual distance between two distinct elements of X
is greater than a positive constant depending only on X; a uniformly discrete set is discrete, that is a set with no finite limit
point. Notice also that By () is uniformly discrete if and only if the quantity 8 = () :=inf{b, b € B(0), b > 0} satisfies
Bam(6) > 0, or equivalently if and only if 0 ¢ B/, (0), where B’ = Bj,(0) is the set of limit points of By (6). In [5] Erd6s and
Komornik considered the general case where the real number 6 is not necessary less than 2. A corollary of one of their
results asserts that if 6 is not a Pisot number and 6 € |1, #] (respectively, and 6 € ]#5, 2[), then B1(#) is not discrete
(respectively, then B;(#) is not discrete and B3(6) = 0). A natural question arises immediately: How can be distributed in R
the elements of B, when B is not discrete? The following result gives a partial answer to this problem:
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Theorem 1. The set By, (0) is everywhere dense if and only if fm (6) = 0.

Combined with the above mentioned result of Erdés and Komornick, Theorem 1 yields:

Corollary. If 6 is not a Pisot number, m > 2 and 6 € ]1, #] (respectively, m >3 and 0 € ]#, 2[), then By (0) is everywhere
dense.

Recall that the question whether there is a non-Pisot number, say again 6, satisfying B1(0) > 0, has been cited in [4]
and remains open. From the above we also see that a possible way to show that all sets By, (9) are everywhere dense when
6 is not a Pisot number, is to prove the implication

B, (0)#8 = Bm(6)=0, (1)

form=1and 6 €1, #] (respectively, for m € {1,2} and 6 € ]#, 2[). In [1] Borwein and Hare have shown that By (6)
is discrete when Bp(9) N [0, ;2] is finite, and the author [6] has proved that the bound ;%; may be replaced by the
(non-optimal) constant # without affecting the discreteness property of Bp;(6). The second aim of this note is to improve
this last result:

Theorem 2. The following propositions are equivalent:

(i) The set By, () is discrete.
(ii) The set B}, (0) N[0, § [Tso(1 — ﬁ)] is empty.

2. The proofs

Proof of Theorem 1. Trivially we have 8 =0 when B is dense in R. To make clear the proof of the converse we shall use
the next result.

Lemma. If 8 = 0, then the following properties hold:

(i) For any € > 0 there exists b € B such that € <b < fe¢.
(ii) Each element of B is a limit point of B from both sides.

Proof. (i) Since 8 = 0, there is by € B such that 0 < by < €. Let N be the greatest rational integer such that #Nbg < ¢. Then,
& <ONt1pg, ¢ <ONt1hg < he and Lemma (i) follows, as N+ 1 € N.

(ii) Since B € B’ and B = —B, there is a decreasing sequence, say (by)ken, of distinct elements of B such that limy_, o by =
0. Let &9 + 10 + --- + €,0", where & € {—m,...,0,...,m} and n € N, be a representation of an element b € B. Then,
"1, + b € B and the sequence (6"+1by + b)yen is decreasing to b. Considering the sequence (—6"t1by + b)rey, We see
that b is a left-hand limit point of B. O

Let us return to the proof of Theorem 1, and assume on the contrary that § =0 and B is not everywhere dense. Then,
there exist positive numbers, say to and 8, such that [tg,to+8]NB=@, asB=—Band 0cB.Let P=P(§):={teR, t>
0, [t,t+8]1NB =0}. Then, to € P and so P # . We shall obtain a contradiction by considering the quantity « := inf P. First
suppose o € P, and let

xe}max(a—%,O),a[. (2)

Then, 0 <x <o and [x,x+38]NB#@. Let b:=¢eo+&10 +---+&,0", where ¢; € {—m, ...,0,...,m} and n € N, be an element
of [x,x+8]. Then, b € B, and from the relations x <b<x+48 <o+ and [«, o + 8] N B =@, we have

be[x, af. (3)
Since 6 < 2, Lemma (i) asserts that there is b’ € BN ]g‘nj{, g‘nj’f [, and by (2) we deduce that o —x < b’0™! < 2(a — x) <3$.
The last inequalities together with (3) yield o < b’6"*! + b < o + 8, and these relations lead to a contradiction, since
b'0"t1 4 b e B and BN ], o + 8[= . Now, assume that « ¢ P. Then, [, @ + 8] N B # @ and there is a decreasing sequence,
say (ty)ken, of distinct elements of P such that limy_, oty =« and ty <« + 6 for all ke N. Let b € [ov, « + 8] N B. It follows
by the relations [ty,ty +3]NB=¢ and o <ty <o+ 3 <ty +§ that

a<b<ty, VkeN. (4)
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Letting k tend to infinity in (4), we obtain @ =b and so [«, o + 8] N B = {«}; this last equality leads also to a contradiction
because by Lemma (ii) the number « is a right-hand limit point of B and so the set [, @ 4+ 6] N B contains certainly more
than one element. O

Proof of the Corollary. Suppose that 6 is not a Pisot number and 6 € ]#,2[ (respectively, and 0 € ]1, H'T‘FS]). Then,
B3(0) =0 (respectively, B1(#) is not discrete and so B,(0) = 0 (this last equality has also been proved in [4])) and the result
follows immediately by Theorem 1, since By (6) C Bp4+1(0) forallmeN. O

Proof of Theorem 2. Set | = Iy (9) := inf{b’, b’ € B'N [0, 00[} and € :=  [T;5o(1 — 8%). It is clear that B’ N[0, ¢] =@ when

B is discrete. Now, assume that B is not discrete. Then, Theorem 3 of [6] asserts that [ <
defined by co =1 and

0+1 Let (cp)n>0 be the sequence

Ch= l_[ (sz—l) forneN.

0<k<n—1
i1 _ (0" =Dy Cn o
Then, ezn—trll =T S gt < g
Cn 1 1
w5, 11 (-5)
0<k<n—1
and so (9%),,20 is decreasing to £. To show the inequality | < ¢, we shall prove that the propositions
BN | g | #£0 = B'N|0, | £ (5)
62" +1 02 62" +1
and
Cn+1 Cn Cn4+1
B/m|:92”“’02"+1]¢® = Bﬂ|: 2n+1]7é@ (6)

are true for all non-negative rational integers n. Indeed, if [ > ¢, then there is ng € N such that <. Let again ng be the

1

"0

smallest rational integer satisfying the last inequality. Then, from the relation [ < < 7= 020 , we have ng > 1, l €] o

9+1 (2 p2"0

;;’?0111 1N B’ and so by (5) (respectively, by (6)) we obtain a contradiction when [ > 0253",, ; (respectively, when [ < ezn:o;l 1)'
+ +

since [ is the smallest limit point of B. To show the relation (5) we consider the real function f(x) = f(x) := —02"x + Cn,

where n € NU{0}. It is clear that f is injective and continuous, and

Cn Cn Cn
() [oms) @)

Using the equality c;4+1 = @ — 1), a simple induction shows that ¢, is a monic polynomial in 6 of degree 2" — 1 and
with coefficients in {—1,1}; thus ¢, =62~ 1£62"2+... 41, VneN, and so

+f(B) CB. (8)

Hence, if (ax)ren is a sequence of distinct elements of B such that llm,Hooak =aand ae| ”n ], then the equality

92” +1°
limy_, o f(ar) = f(a) together with (7) and (8) give f(a) € B’ N[0, Zn ] and so the implication (5) is true. To prove the
relation (6) notice first that we may suppose 1(6) > 0, as 0 € B}, (0) for all m e N when B1(6) = 0. It follows by Remark 2
of [2] that 6 is a root of a non-zero polynomial with coefﬁcients in {—1,0,1}; thus 6 is an algebraic integer and B is
contained in the ring of integers of the field Q(#). Now, set g := — f,+1. Then,

N c N+1 c N—-1 c N c
n+1 n+1 n+1 n+1
g(:| Z 92n+1k’ Z 92n+lki|> Ci| Z 92n+1k’ Z 92n+1k:|’

k=1 k=1 k=1 k=1

where N runs through N (by convention Zk 1 egﬁﬂ - :=0). Notice also that for each x € ]02"”1‘1 , 02n+ ][ there exists a unique
positive rational integer, say N(x), such that

N(x) N(x)+1
Cn+1 Cn+1
Z 02n+1k X< Z 92n+1k

k=1 k=1
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because ) )~ 9;’,11},( = Hzﬁ”ﬁlq = (eznfl";éznﬂ) = gz~ Consequently, if ¢ €] 62",1&11 g7l and (tken is a sequence of
distinct elements of B satisfying limy_, o tx =t, then limy_, o, g(tx) = g(t), and so g(t) € B’ (recall that g is injective and

continuous, and by (8) we have g(B) C B). Hence, g(t) € B’ H]ZN(U ! egﬁj;}k, II{V(? g;ﬁﬂk] Iterating the map g we deduce

that gN©O)(t) e B’ N 10, Cz"ﬁ ], and so the implication (6) is true when B’ N[ Cz"nﬂ] , 92”+] 1# {92” }. Finally, let us consider
} Notice first by (7) and (8) that C” is a left-hand
limit point of B. Furthermore, if (sk)keN is a sequence of distinct elements of BN]-tl [ such that llmlHoosk

92n+1 ’ 62"+1
then by the above for each k € N there is Ny := N(si) € N such that
Cn+1
gMNd(s) e ]0, GZM ] N B;

thus if the set E := {g™(sy), k € N} is not finite, then B has a limit point which belongs to the interval [0, ;"“ 1, and

on+1

the case where B’ N [;”“ n ] is reduced to the singleton { 2

on+1 92”

_Cn
ezn 11’

so (6) is true. Now, assume on the contrary that E is finite and let b € BN ]0, 52";;11 1 such that b = gNK)(s) for infinitely

many k. Writing g™ (s;) explicitly, the last equality gives

b=yNesy —yMNeDep g — o — yengr — cnyr, (9)

where y := 02", Hence, if o is an embedding of Q(6) into the complex field C, sending 6 to a conjugate over Q of
modulus at least 1, then (9) implies

(‘J/)Nk —

o(y)—1
o(b) 1- o'(y])Nk
—O'()/)Nk + U(Cnﬂ)io_(y) 1

(o(y) ¢{0,1} because 6 > 1), and so

’

a(b) =a ()Mo (sp) — o (cnt1)

o (sk) =

o(c
|o@wkﬂoww+2+ilﬂl. (10)
o(y)—1
Notice also that if g9 +£10 +- - -+ &40 is a representation in B of some s, and if T is an embedding of Q(9) into C sending
6 to a conjugate of modulus less than 1, then

|7 (s0)] m}jhwﬂ nwn (11)

It follows by (10) and (11) that the conjugates of the integer s of the field Q(6) are bounded; thus s; takes at most a finite
number of values and this is absurd, as {si, k € N} is not finite. O

Remark 1. By the same method as in the proof of Theorem 2, we easily obtain I ¢ ]efﬁ, ef—ﬂ][, where ne N, P, =
en_10" 1+ ,20" 2+ ...+ g9 and & € {—m,...,0,...,m}. I am not able to prove (or disprove) the inclusion: 10, 1[ C
Unenlgits. ga25L. which implies (1).

Remark 2. With the notation of the proof of Theorem 2, suppose B # 0. Then, each finite sum, say s, of the form %1 +

-+ Z—%, where ¢; € {—~m,...,0,...,m} and N € N, does not belong to B’. Indeed, if (by)ken is a sequence of distinct
elements of B such that limg_o, bx = s, then 0Nb, — (e10N~"1+ ... + ey) € B and limy_, o0 ONby — 10N 1 — ... —ey =0.
In particular for m =1 we have L1(6*) :=sup{b’,b’ € B1(6) N [0, 1]} < 1, since by Remark 2 of [2] there are N € N and
& €{—1,0,1} such that 1 = 81 4+t QN, thus 0 < 81(0) < (0) < <L1(0) <1.
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