
C. R. Acad. Sci. Paris, Ser. I 348 (2010) 207–210
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Statistics

Hypothesis testing in multivariate partially linear models

L’utilisation des procédures de tests dans les modèles partiellement linéaires
multidimensionnels

Marcin Przystalski
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Multivariate partially linear models are generalizations of univariate partially linear models.
In the literature, some methods of estimation of parametric and nonparametric component
have been proposed. In this Note we focus on hypothesis testing of treatment effects in
multivariate partially linear models. We construct a procedure for testing hypothesis H0:
CBM = 0.
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r é s u m é

Les modèles partiellement linéaires multidimensionnels sont une généralisation des
modèles partiellement linéaires unidimensionnels. Dans la littérature, on retrouve certaines
méthodes d’estimation des composants paramétriques et non paramétriques. Dans cette
note, nous nous concentrons sur l’utilisation des procédures de tests pour évaluer les
effects du traitement dans les modèles partiellement linéaires multidimensionnels. Nous
construisons une procédure pour tester l’hypothèse H0 : CBM = 0.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Univariate semiparametric models have received considerable attention over the recent years (see [2,3] and the references
therein) and found various practical applications e.g. in agriculture, molecular biology, econometrics and medicine. In these
models the regression function can be expressed as a sum of linear and nonparametric component. In some situations,
instead of using univariate models, it is necessary to model a multivariate variable. For example, in finance, it is now widely
accepted that, working with series, such as asset returns, in a multidimensional framework leads to better results than
working with separate univariate models. In this case, we may be interested in using a multivariate partially linear models.

Let Y = (y1, . . . , yd) be n×d matrix of observations, X = (x1, . . . , xp) = (ζ 1, . . . , ζn)′ n× p design matrix, B = (β1, . . . ,β p)

is p × d matrix of unknown parameters. For each r ∈ {1, . . . ,d}, let fr be an unknown function, f r = ( fr(t1), . . . , fr(tn))′ ,
where ti ∈ D are known and nonrandom, D ⊂ R is a bounded domain, and F = ( f 1, . . . , f d). Finally let U = (u1, . . . , ud) =
(τ 1, . . . ,τn)′ be an n × d matrix of errors, where n � p + d. Then the multivariate partially linear model can be written as

Y = XB + F + U. (1)
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Without loss of generality, we assume that the domain D = [0,1] and for each r ∈ {1, . . . ,d} fr has ν � 2 continuous
derivatives on [0,1].

Pateiro-Lopéz and Gonzaléz-Manteiga [4] described estimators of B and F, which generalize the estimators from a Speck-
man approach [6] for the multivariate case, and studied their asymptotic behaviour.

In practical situations, besides of estimation of treatment parameters, we are interested in testing hypotheses related to
those parameters. In this Note, we describe a procedure for testing hypothesis H0: CBM = 0 in multivariate partially linear
models.

2. Notation and assumptions

In this section we introduce some notation. We denote by bold letters A, a matrices and vectors, respectively. vec A will
denote the vector obtained by stacking the columns of A. We further define F = ( f 1, . . . , f d), where f r = ( fr(t1), . . . , fr(tn)),
r = 1,2, . . . ,d.

Let S = (Sn,h(ti, t j))i, j , where Sn,h(·,·) is a weight function depending on the bandwidth parameter h. Let q � 1, then for
a n × q matrix A we write Ã = (I − S)A.

Let us assume, as in [4], that xik ’s and ti can be expressed as by the following regression model. Let n, p ∈ N then

xik = gk(ti) + ηik, (2)

where the gk are unknown smooth functions and ηik are random variables with mean zero. Using the vector notation matrix
X can be expressed as

X = g + η, (3)

where X = (x1, . . . , xp), g = (g1, . . . , g p) and η = (η1, . . . ,ηp) with x j = (x1 j, . . . , xnj)
′ , g j = (g j(t1), . . . , gn(tn))′ and η j =

(η1 j, . . . , ηnj)
′ .

Let i, j ∈ {1, . . . ,n}, k, l ∈ {1, . . . , p} and r, s ∈ {1, . . . ,d}. Throughout the we will assume that:

(A1) The error vectors τ i are independent with mean vector 0 and matrix of variances and covariances Σ = (σrs).
(A2) n−1η′η → V, where V = (vij) is positive definite.
(A3) tr(S′S) = ∑n

i=1
∑n

j=1 S2
i j = O(h−1).

(A4) ‖Sηk‖2 = O(h−1) = ‖S′ηk‖2.
(A5) g̃k(ti) = hνh1(ti)gν

k (ti) + o(hν).
(A6) ‖(I − S) f r‖2 = ‖ f̃ r‖2 = O(nh2ν).
(A7) n−1η′ f̃ r = O(n−1/2hν).
(A8) There is a probability density function p(t) on [0,1] such that for each continuous function c(t)

lim
n→∞n−1

n∑
i=1

c(ti) =
1∫

0

c(t)p(t)dt.

(A9) tr(S) = O(h−1).
(A10) maxi

∑n
j=1 |Sij| = O(1), max j

∑n
i=1 |Sij| = O(1).

3. Preliminary results

Pateiro-Lopéz and Gonzaléz-Manteiga [4] proposed a method to estimate B and F in model (1), when covariance matrix
of vec U is equal to Σ ⊗ In . The proposed estimators B̂ and F̂ generalize the Speckman approach [6] for a multivariate case
and can be written as

B̂ = (
X̃′X̃

)−1
X̃′Ỹ,

F̂ = S(Y − XB̂).

In [4], Pateiro-Lopéz and Gonzaléz-Manteiga showed that the estimator B̂ is asymptotically normal.

Theorem 3.1. Let h → 0, nh2 → ∞, and nh4ν → 0 when n → ∞. Suppose that either (i) the components of X are uniformly bounded
or (ii) there is δ > 0 such that, for each i ∈ {1, . . . ,n} and each k ∈ {1, . . . , p} the model (2) holds with E|ηik|2+δ < C < ∞. Then,
under assumptions (A1)–(A8) together with (A10), we have

n1/2 vec
[

B̂ − E (̂B)
] d→ Np×d

(
0,Σ ⊗ V−1).
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Corollary 3.2. Under the assumptions of Theorem 3.1 and the usual optimal bandwidth assumptions (h ∼ n−1/(2ν+1)) we have

n1/2(β̂ − β)
d→ Np×d

(
0,Σ ⊗ V−1),

where β̂ = vec B̂ and β = vec B.

Proof. Let us consider the expression n1/2(β̂ − β).

n1/2(β̂ − β) = n1/2[ β̂ − E(β̂)
] + n1/2[E(β̂) − β

]
.

By Theorem 3.1 we have that

n1/2[ β̂ − E(β̂)
] d→ Np×d

(
0,Σ ⊗ V−1).

By Theorem 2 in [4], we have that under the usual optimal bandwidth assumptions

n1/2[E(β̂) − β
] → 0.

This completes the proof. �
4. Main result

Suppose, one would like to test in model (1) hypothesis

H0: B = 0

or more general

H0: CBM = 0, (4)

where Cw×p is known matrix of full row rank, w � p, and Md×q is a matrix of full column rank, q � d. In multivariate linear
regression models hypothesis (4) is tested by several test statistics, among which the most popular is Lawley–Hotelling trace
statistic [5,7].

Using vec notation we can write hypothesis (4) in equivalent way H ′
0 : Lβ = 0, where L = (M′ ⊗ C) and β = vec B. By

Corollary 3.2 we have

n1/2L(β̂ − β)
d→ N(0,Ω), where Ω = (

M′ΣM
) ⊗ (

CV−1C′).
Let us consider following statistic

X2 = n(β̂ − β)′L′((M′ΣM
) ⊗ (

CV−1C′))−1
L(β̂ − β).

Then we reject hypothesis H ′
0 if X2 > cα , where cα is chosen in such way that P (X2 > cα |H ′

0) = α.
Under H ′

0, we can simplify X2, using properties of vec operator and Kronecker product, and we get

X2 = n
[
vec(ĈBM)

]′[(
M′ΣM

) ⊗ (
CV−1C′)]−1[

vec(ĈBM)
]

= n tr
[
(ĈBM)′

(
CV−1C′)−1

(ĈBM)
(
M′ΣM

)−1]
.

Because in general Σ is unknown, we estimate Σ as

Σ̂ = (n − tr H)

n
Y′(I − H)′(I − H)Y,

where H = S + (I − S)X(X̃′X̃)−1X̃′(I − S) is the hat matrix for model (2).

By the fact that Σ̂
P→ Σ and the continuous mapping theorem [8] we have

Ω̂ = (
M′Σ̂M

) ⊗ (
CV−1C′) P→ (

M′ΣM
) ⊗ (

CV−1C′) = Ω.

Combining this fact with the Slutsky theorem and with the central limit theorem we get

n1/2Ω̂
−1/2

L(β̂ − β)
d→ N(0, I).

Finally, we obtain that under the null hypothesis (4)

T 2
0 = (n − tr H) tr

[
(ĈBM)′

(
CV−1C′)−1

(ĈBM)
(
M′Σ̂M

)−1] d→ χ2
wq. (5)

Remark 1. In practice matrix V in (5) is unknown, by Lemma 1 in [6] this matrix for sufficiently large n can be replaced by
expression n−1X̃′X̃.

Theorem 4.1. Let the assumptions of Corollary 3.2 be satisfied. Then, under the null hypothesis (4) the test statistic T 2
0 has an asymptotic

chi-square distribution with wq degrees of freedom.
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5. Discussion

In this Note we constructed a procedure for testing hypothesis H0: CBM = 0, based on the asymptotic result obtained
by Pateiro-Lopéz and Gonzaléz-Manteiga [4]. An alternative approach to hypothesis testing problem in multivariate partially
linear models can be based on profile likelihood inference proposed by Fan and Huang [1]. We would like to end this Note
by stating some open questions: (i) does it exist a better approximation of the distribution of T 2

0 in model (1); (ii) can we
obtain an F approximation for T 2

0 like it was proposed by McKeon (see [5,7]) for multivariate linear models?
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