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We show uniqueness up to sign of positive, orthogonal almost-Kähler structures on any
non-scalar flat Kähler–Einstein surface.
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r é s u m é

On montre l’unicité au signe près de structures presque kähleriennes orthogonales positives
sur toute surface de Kähler–Einstein de courbure scalaire non-nulle.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Given a Riemannian four manifold (M, g) an orthogonal almost-Kähler structure is an orthogonal almost complex struc-
ture J such that g( J · ,·) is a closed two form. It seems to be quite difficult to determine, in general, the obstructions on the
metric g to the existence of such a structure. While integrability results are available for Einstein, anti-self-dual metrics [2],
familiar examples such as the Kodaira–Thurston manifold support (see e.g. [1]) a full circle of almost-Kähler structures on
the same orientation.

In this Note we explore the uniqueness question of almost-Kähler structures orthogonal with respect to a Kähler metric
and compatible with the positive orientation.

Theorem 1.1. Let (M, g, J ) be a connected Kähler–Einstein surface, positively oriented by J . Then any positive, orthogonal almost-
Kähler structure J ′ is integrable; in particular J ′ = ± J when g has non-vanishing scalar curvature.

The proof of Theorem 1.1 is build around the observation that the angle function between the structures J and J ′ is
isoparametric in the sense of Cartan. The conclusion follows by investigation of the eigenvalue structure of the second
fundamental form of its level sets.

In particular we obtain the following, that answers a question posed in [1]:

Corollary 1.1. Any orthogonal almost-Kähler structure on (some open piece of ) CH
1 × CH

1 or CH
2 equipped with their canonical

metrics is integrable.
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Proof. Both spaces are equipped with Kähler–Einstein metrics of negative scalar curvature. In the case of CH
2, an orthogonal

almost-Kähler structure is either compatible with the negative orientation, where integrability follows from [2] since the
metric is self-dual, or with the positive orientation, where the same conclusion is obtained by Theorem 1.1. For CH

1 × CH
1

which admits a Kähler structure on either orientation it suffices to apply Theorem 1.1 twice. �
2. Almost-Kähler structures on Kähler surfaces

Let (M, g, J ) be a Kähler surface, positively oriented by J and admitting a positive orthogonal almost-Kähler structure J ′ .
Recall that the bundle Λ+M of self-dual forms on M splits as

Λ+M = 〈ω J 〉 ⊕ λ2
J M (1)

where λ2
J M = {α ∈ Λ2M: α( J ·, J ·) = −α}. The Kähler form ω J ′ = g( J ′ · ,·) of J ′ is self-dual hence

ω J ′ = xω J + Ψ

along (1), where ω J = g( J · ,·) is the Kähler form of J and Ψ belongs to λ2
J M . The angle map x : M → R is explicitly given

by x = − 1
4 〈 J ′, J 〉.

Since ω J ′ is a closed form in Λ+M it is in particular harmonic, thus �x = 0 because the splitting (1) is parallel w.r.t. the
Levi-Civita connection ∇ of g and hence preserved by the Laplace operator. At this stage it is straightforward to treat the
compact case.

Proposition 2.1. If M is compact or x is constant then either J ′ = ± J or the scalar curvature s of the metric g vanishes and J ′ is
integrable.

Proof. When x is constant the form Ψ either vanishes or it has constant, non-zero norm. As it is well known, the latter
case forces s = 0 and ∇Ψ = 0. When M is compact x must be constant since it is harmonic. �

Let now D be the open set where Ψ is non-zero, to be assumed not empty in what follows. After re-normalisation of
Ψ we can write J ′ = x J + yI where I is a local gauge for J and x2 + y2 = 1. That is I is an orthogonal almost complex
structure such that I J + J I = 0. We obtain a local gauge I ′ for J ′ given by

I ′ = −y J + xI, K ′ = I ′ J ′ = K , (2)

where K = I J .
Because J is Kähler we have ∇ I = b ⊗ K for some local 1-form b on M such that db = ρ J , where ρ J = g(Ric ◦ J · ,·) is

the Ricci form of (g, J ). Here the Riemann curvature tensor is defined by R(X, Y ) = −∇2
X,Y + ∇2

Y ,X for all X, Y in T M and
Ric is the Ricci contraction.

The local connection 1-forms a′ and b′ of the gauge I ′ are determined from the almost-Kähler condition on (g, J ′), that
is dω J ′ = 0, by

∇ J ′ = a′ ⊗ I ′ − J ′a′ ⊗ K ′, ∇ I ′ = −a′ ⊗ J ′ + b′ ⊗ K ′. (3)

The action of J ′ on 1-forms on M is defined by J ′α = α( J ′·). Without loss of generality we write x = cos θ , y = sin θ for
some local function θ on M .

Lemma 2.1. The following hold on D:

(i) a′ = dθ and J ′a′ = − sin θb;
(ii) b′ = cos θb;

(iii) |grad θ |2 = − s sin2 θ
4 .

Proof. Let us record first the following inversion formulae

J = x J ′ − yI ′, I = y J ′ + xI ′. (4)

(i) We compute

∇ J ′ = dx ⊗ J + yb ⊗ K + dy ⊗ I = (x dy − y dx) ⊗ I ′ + (yb) ⊗ K ′

after using (4). Therefore a′ = x dy − y dx = dθ and yb = − J ′a′ from the almost-Kähler condition.
(ii) As in (i), we differentiate in (2) to find

∇ I ′ = −dy ⊗ J + xb ⊗ K + dx ⊗ I = (y dx − x dy) ⊗ J ′ + xb ⊗ K ′
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after using (4) and x2 + y2 = 1. The claim is proved by comparison with (3).
(iii) Because (g, J ) is Kähler the positive Weyl tensor is given by

W + =
( s

6 0

0 − s
12

)

with respect to the decomposition (1). In particular, W +ω J ′ = s
6 (xω J − y

2 ωI ), making that the conformal scalar curvature

κ = 3〈W +ω J ′ ,ω J ′ 〉 of (g, J ′) is given by κ = (x2 − y2

2 ) s. The well known (see [1]) relation κ−s
3 = 1

4 |∇ J ′|2 combined with (3)
and (i) yields the claim. �

In particular, Theorem 1.1 follows immediately when s > 0 (see also [1]). Therefore, we assume from now on that the
metric g is Einstein, that is ρ J = s

4 ω J and re-normalise the scalar curvature to s = −4. We may assume, w.l.o.g. that

sin θ > 0 so that |grad θ | = sin θ by Lemma 2.1(iii). The unit vector field ξ = grad θ
|grad θ | is then totally geodesic henceforth

normal to the co-dimension one Riemannian foliation induced by V = ker dθ .
Let S in S2 V be given by 〈S V , W 〉 = (∇V ξ)W for all V , W in V . It describes the second fundamental form of the

distribution V . The unit vector field ξ1 = J ′ξ in V has dual one form ξ1 subject to

dξ1 = −ω J , (5)

since ξ1 = b by (i) in Lemma 2.1.

Lemma 2.2. The following hold:

(i) tr S2 = 2 cos2 θ − 1;
(ii) S(ξ1) = −(cos θ)ξ1 .

Proof. (i) Because x is harmonic, we have �(dx) = 0 and hence (∇�∇)dx = dx by the Bochner formula. Taking the scalar
product with dx we get further

1

2
�|dx|2 = 〈∇�∇(dx),dx

〉 − |∇ dx|2 = |dx|2 − ∣∣∇(dx)
∣∣2

.

Since

dx = −(
sin2 θ

)
ξ (6)

we have |dx| = sin2 θ = 1 − x2. Using again that x is harmonic it follows that 1
2 �|dx|2 = 2|dx|2 − 6x2|dx|2 hence |∇(dx)|2 =

(6x2 − 1)|dx|2 = sin4 θ |∇ξ |2 + 4 sin4 θ cos2 θ by (6) and the claim follows.
(ii) By (5) we have dξ1 = −ω J hence 〈∇X J ′ξ, Y 〉 − 〈∇Y ( J ′ξ), X〉 = −〈 J X, Y 〉 for all X, Y in T M . Taking Y = J ′ξ we get

∇ J ′ξ ( J ′ξ) = −( J J ′)ξ . Therefore

J ′∇ξ1ξ = −(∇ξ1 J ′)ξ − (
J J ′)ξ.

However, by means of (2) and the definition of J ′ we get (∇ξ1 J ′)ξ = (sin θ)Kξ while (4) yields ( J J ′)ξ = −(cos θ)ξ −
(sin θ)Kξ and the claim follows. �
Proof of Theorem 1.1. On the orthogonal complement V0 of ξ1 in V we must have trV0 S2 = cos2 θ − 1 � 0 by Lemma 2.2.
Since S is symmetric and preserves V0 it follows that cos2 θ = 0 which is contradictory to having D non-empty. Therefore
the angle function x is constant and the claim follows from Proposition 2.1. �
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