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Nous proposons dans ce travail une récurrence sur les lois marginales d'une distribution
de Gibbs 7. Une conséquence directe est le calcul exact de la constante de normalisation
de 7.
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1. Introduction

Usually, obtaining the marginals and/or the normalizing constant C of a discrete probability distribution 7 involves high
dimensional summation: for example, for the binary Ising model on a simple grid 10 x 10, the calculation of C involves
2100 terms. One way to prevent this problem is to change distribution of interest for an alternative as, for example in spatial
statistics, replacing the likelihood for the conditional pseudo likelihood, [2]. Another solution consists of estimating the
normalizing constant; see for example Pettitt et al. [8] and Moeller et al. [7] for efficient Monte Carlo methods, Bartolucci
and Besag [1] for a recursive algorithm computing the exact likelihood of a Markov random field, Reeves and Pettitt [9] for
an efficient computation of the normalizing constant for a factorisable model.

We present specific results for a Gibbs distribution 7. We derive results of Khaled [5,6] who gives an original linear
recursion on the marginals of 7, the law of Z = (Z1, Z3, ..., Zr) € ET; this result eases the calculation of 7’s normalizing
constant. We generalize Khaled results noticing that if r is a Gibbs distribution on 7 ={1,2,..., T}, then & is a Markov
field on 7, so it is easy to manipulate its conditional distributions that are the basic tools of our forward recursions.

2. Markov representations of a Gibbs field

Let T > 0 be a fix positive integer, E = {eq, ez, ..., ey} a finite state space, Z = (Z1, Z2, ..., Zt) € ET a temporal se-
quence with distribution 7. Let us denote z(t) = (z1, z2, ..., ). We assume that 7 is a Gibbs distribution with energy and
potentials:

m(2(T)) = CexpUr(z(T)) withC™'= > expUr(z(T)) where
z(T)eET
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U(z®) = > 05z + > Ws(zs1,25) for2<t<T, and Ui(z1)=61(21). (1)

s=1,t s=2,t

So, 7 is a bilateral 2 nearest neighbours Markov field, [4,3]

T(ze|zs, 1<s<Tands#1t) =m(z | z—1,Ze41) (2)

but Z is also a Markov chain:

Tzt |zs,s<t—1)=m(z | zt—1) f1<t<T. 3)

An important difference appears between formulas (3) and (2): indeed, (2) is computationally feasible, when (3) is not.
3. Recursion over marginal distributions

3.1. Future-conditional contribution I'; (z(t))

For t < T — 1, the distribution 7 (z1, 22, ..., Zt | Zt+1, Zt+2, - - -, Z) conditionally to the future, depends only on z;1:
(z1,22, -5 2T)
(21,22, -, 2t | Ze41, 242, -5 2T) = i =7(21,22, -+ 2t | Zt41)-
Zugegtﬂ(UpZtJrl,--.,ZT)

We can also write (21,22, ..., | Ze41) = Ct(ze41) expU{ (21, 22, . .., Zt; Ze41) where U} is the future-conditional energy:
Uf(z1.22,....zt: 2e41) = Ue(z1, 22, . ., 20) + Wey1 (2, Ze11), (4)

and Crp1(ze41) 1= ZuaeEt exp{U(u1, ..., ur; ze41)}. Then, for i =1, N:
(21,22, ..., 2 | Zep1 =€) = Ce(e) Ve (21, 22, ..., Ze: )  Where y;(z(t); e;) = exp U/ (z(t): €;).

With the convention ¥, =0, we define for t < T, the vector I7(z(t)) € RN of the future-conditional contributions as

(It(z®)); = e (z®O:ei), 1<i<N,
and the recursion matrix A; by

Ac(i, j) =exp{6i(ej) + Wry1(ej.en}, i, j=1,N. (5)
Then we get the following fundamental recurrence.

Proposition 3.1. Forall 2 <t < T, z(t) = (21, 22, .. ., zt) € E' and e; € E, we have:
Ye(z(t — 1) ejse) = Ac(i, ) x ye—1(2(t — 1); €)) (6)
and
Y T(2t=1),2t) = AT (26 = D). (7)
zt€E

3.2. Forward recursions on marginals and normalization constant

Let us define the following 1 x N row vectors: E1 = Br =(1,0,...,0), and the (B¢);—r.2 defined by the forward recursion
Bi—1 = B{A; if t < T; we also denote K1 = ZzleE I (z1) € RN, We give below the main result of this work.

Proposition 3.2. Marginal distributions mr; and calculation of the normalization constant C.
(1) For1 <t<T:

7 (2()) = C x Be I3 (2(1)). (8)
(2) The normalization constant C of the joint distribution 7 verifies:

c! =E{ATA7_1---A2K;. 9)

The formula (9) reduces to C~1 = E1ATAT—2K; for time invariant potentials.

As a basic example, let us consider E = {0, 1}, 6;(z;) = az;, and Wiy1(z, ze+1) = Bzeze+1; the analytic expressions of
A, K, are trivially derived. We computed C—! = E{ArAT—2K; for increasing values of T; the computing time is always
negligible for T < 700, whereas computing C~! by direct summation needs 750 seconds for T = 20, 6 hours for T = 25,
and the method becoming ineffectual for T > 25.
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4. Extensions to general Gibbs fields
There are various generalizations of the preceding results.
4.1. Temporal Gibbs model

Let us give the following example as an illustration to possible extensions. Coming back to the previous model (1), we
add the interaction potentials ¥; s(zs_2, zs). Then 7 is a 4 nearest neighbours Markov field but also a Markov chain of
order 2. Conditionally to the future, we get

(21,22, 2 | Ze41, Ze42s -2 20) = T0(2(8) | Zeg1, Ze42) = CeZeq1, Ze42) exp UL (2(0); 2e41, 2e42),  with

U (2(t); ze41, Ze42) = Ue(2(0) + W1,641 (2, Ze41) + W2,041 (Ze—1, Ze41) + W2,042 (22, Ze42).
Then, for a, b and c € E, Uf(z(t — 1), a; (b, ¢)) = Uf_; (z(t — 1); (a, b)) + 6¢(@) + ¥1 r+1(a, b) + W2 ¢42(a, ©); analogously to the
previous example, we define the future-conditional contributions and the N2 x N? matrices A; by

Ye(2(0); (2e41, 2e42)) = exp U (2(0); (ze41, 2e42)).

Ac(@, ), (k, 1)) = exp{6; (ex) + P1.c41(ex. €) + ¥2.e42(ek. €))].

Similarly as 3.1, we get the following recursion:

Ve(z(t — 1), e (eire)) = Ac((A, ), (k. 1) x pye—1(z(t — 1); (ex, €)).

We thus obtain a recurrence (7) on the contributions I3(z(t)) and analogous results as (8) and (9) for the bivariate Markov
chain (Z;_1,Z;), t=1,T.

4.2. Spatial Gibbs fields

For te 7 ={1,2,..., T}, let us consider Z; = (Z«,;, i € Z), where Z={1,2,...,m}, Z¢; € F. Then Z = (Z;, s=(t,i) €
S) is a spatial field on S =7 x I. We note again z; = (z(,jy, i € L), z(t) = (z1,...,2), z=z(T) and we suppose that the
distribution 7r of Z is a Gibbs distribution with translation invariant potentials @4, (e), k=1, K associated to a family of
subsets {Ay,k=1,K} of S. For A C S, let us define H(A) = sup{|u — v|,3(u,i) and (v, j) € A}, and H = sup{H(Ay), k=
1, K}. With this notation, we write the Gibbs-energy

H T
U(z)=Z Z U(Ze_py ..., 2t) WithW(ze_p,...,z) = Z Z Da,+5(2)

h=0 t=h+1 k:H(Ar)=hseS; (k)
where Si(k) = {s = (u,i): Ay +sC S and t — H(Ay) < u <t}. Then (Z;) is a Markov process of order H and Y; =
(Zt—H, Zt—H41, ..., Zt), t > H a Markov chain on EM for which we get the results (8) and (9).

We applied the result to the calculation of the normalization constant for an Ising model. For m =10 and T = 100, the
computing time is less than 20 seconds.
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