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‘ - 100 up to biholomorphism), and exhibited each of them explicitly as a quotient of the unit
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ball in C2. Some of these fake planes admit singular quotients by 3 element groups and
Presented by Pierre Deligne three of these quotients are simply connected. Also exhibited are algebraic surfaces with
c% =3¢, = 9n for any positive integer n.

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RESUME

En partant de la classification de Prasad et Yeung [Invent. Math. 168 (2007) 321-370], nous
montrons qu'il existe précisément 50 faux plans projectifs (a homéomorphisme prés, 100 a
biholomorphisme prés), et présentons chacun comme un quotient de la boule unité de C2.
Certains de ces plans admettent des quotients singuliers par des groupes d’automorphismes
a 3 éléments, et trois d’entre eux sont simplement connexes. De plus, pour chaque entier
n > 0, nous présentons des surfaces algébriques avec cf =3c=9n.

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

A fake projective plane is a smooth compact complex surface M which is not biholomorphic to the complex projective
plane P2, but has the same Betti numbers as P2, namely 1,0, 1,0, 1. Mumford [9] constructed the first such surface and
showed that only finitely many exist. Two more examples were found by Ishida and Kato [4], and another by Keum [5]. See
Rémy [13] and Yeung [16] for recent surveys.

By [14], the universal cover of a fake projective plane M is the unit ball B;(C?) in C2. So the fundamental group I7 is a
cocompact torsion-free discrete subgroup IT of PU(2, 1) having finite abelianization. By Mostow’s strong rigidity theorem, IT
determines M up to holomorphic or anti-holomorphic equivalence. By [7], no fake projective plane can be anti-holomorphic
to itself. By the Hirzebruch Proportionality Principle [3], /7 must have covolume 1 in PU(2, 1). By [8,15], /T must be arith-
metic. The algebraic group G (k) in which I7 is arithmetic is described as follows (see [11]). There is a pair (k, £) of number
fields such that k is totally real and ¢ is a totally complex quadratic extension of k. There is a central simple algebra D of
degree 3 with center £ and an involution ¢ of the second kind on D such that k = {x € £: ((x) = x}. The algebraic group

G is defined over k such that G(k) = {z € D | 1(z)z = 1}/{t € £ | tt = 1}. There is one Archimedean place vq of k so that
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C(kvo) = PU(2,1) and G(ky) is compact for all other Archimedean places v. The data (k, ¢, D, vg) determines G up to k-
isomorphism. Using Prasad’s covolume formula [10], Prasad and Yeung [11,12] eliminated most (k, ¢, D, vg), and listed a
small number of possibilities where I7's might occur.

Moreover, their results (recast slightly) give a short list of maximal arithmetic subgroups I which might contain a /7.
Each of these I’s has the form G(k) N [Tvev ; P,, where V ¢ denotes the set of non-Archimedean places of k and where

{Py: v eV} is a coherent family of maximal parahoric subgroups P, < G(ky). For all but three IT’s, there is a unique I"
containing it. In the remaining three cases, /7 is contained in two maximal arithmetic subgroups, whose intersection is a
group G(k) N l_[vevf Py, where one of the P,’s is Iwahori, rather than maximal. In all cases the class of IT is specified by

k, £, D and the family {P,: v € Vr}. For each class there is an integer N > 1 such that the fundamental groups of the
fake projective planes are the torsion-free subgroups I7 of index N in the corresponding G(k) N [Tvev ; P, having finite
abelianization.

One uses lattices to describe concretely the parahoric subgroups P, involved in each class. If v € Vy splits in £ and if
G(ky) is not compact, then G(k,) = PGL(3, ky). The maximal parahoric subgroup P, is conjugate to PGL(3, ©,), where O,
is the valuation ring in ky. When v € V¢ does not split in ¢, denote also by v the unique place of £ over v. Let ky and £,
be the corresponding completions, O, the valuation ring in ¢,, and 7, a uniformizer of ¢,. Then ¢ induces a nondegenerate
hermitian form h, on €3, and G (ky) = PU(hy). So G(ky) acts on the set of Oy-lattices in ¢3. The dual £’ of a lattice £ is the
lattice £'={y € Zﬁ: hy(x, y) € O, for all x € £}. We shall say that a maximal parahoric P, is of type 1 if it is the stabilizer
of a self-dual lattice £1, and of type 2 if it is the stabilizer of a lattice £ such that 7, L, g L g L;. See [2] for further
details. A parahoric P, is an Iwahori subgroup if it is the intersection of one maximal parahoric of each type, corresponding
to two lattices L1, £ as above, satisfying also , Ly C L1 C Ls.

Let 77 denote the set of v € V¢ such that v does not split in £ and P, is maximal parahoric of type 2. For the 3 classes
in which a P, is Iwahori, this happens when v is the 2-adic place; for all other places v’ of k not splitting in ¢, P, is of
type 1, and we write 77 = {2I}.

2. Results

We have found a presentation for each relevant I”, and enumerated the (conjugacy classes of) subgroups IT of index N
in I" such that I7 is torsion-free and has finite abelianization.

When D splits over ¢, [11, Proposition 8.8] shows that there are at most 5 possible pairs (k, £), which [11] denotes C1,
Cs, C11, C1g and Cy1. Our first theorem verifies a conjecture in [11].

Theorem 2.1. For each of the classes arising from these five field pairs there are no torsion-free subgroups IT of I of index N having
finite abelianization. So no fake projective planes occur in these cases.

In all but one of these classes there is no torsion-free subgroup of I" of index N. For the class (Ci1, 77 = ¥), for which
k=Q(/3), £ =Q(/3,i) and N = 864, we show that there is, up to conjugacy, a unique torsion-free subgroup of I" of
index N. Its abelianization is Z2. So for each integer n > 1 there is a normal subgroup I7, of IT of index n. Then [14,
Theorem 4] M,, = B1(C?)/IT; satisfies c1(My)? = 3c(My) = 9n.

When D does not split over ¢, i.e, is a division algebra, it turns out that there is a unique v € V¢ for which Gky) is
compact. This splits over ¢ and lies over the p-adic place of Q, for the p listed in the tables below. Prasad and Yeung [11,12]
showed that there are precisely 28 classes, and showed that each is non-empty. The classes are specified by the pairs (k, ¢)
and the p and 77 listed in Tables 1 and 2.

Theorem 2.2. Up to automorphisms of PU(2, 1), there are precisely 50 subgroups IT of PU(2, 1) which are fundamental groups of fake
projective planes. The number of IT’s in each class is listed in Tables 1 and 2.

In Tables 1 and 2, C3, Cio, C1g and Cyg are notations from [11]. The place 17— of Q(+/2) is the 17-adic place for which
V2 = —6. Most of these IT’s are congruence subgroups, determined by calculable congruence conditions. However, at least
one [T is not a congruence subgroup.

Armed with a presentation of each of the 28 I''s, we are able to list not only the subgroups IT of index N, but also the
subgroups H such that IT < H < I'. These give singular surfaces My = B1(C%)/H covered by M = B{(C?)/IT and having
fundamental group 1 (My) = H/(torsion elements in H) [1]. In particular, the fundamental groups appearing in this way
when [H : IT] =3 are {1}, C2, C3, C4, Cg, C7, C13, C14, C3 x C2, C3 x C4, S3, Dg and Qg. Here C,, denotes the cyclic group
of order n, S3 is the symmetric group of order 6, and Dg and Qg are the dihedral and quaternionic groups of order 8. In
the case IT < H, Keum [6] obtained much information about the possible My from general considerations.

We conclude with a brief description of our methods. In the division algebra case we first realized D concretely
as a cyclic simple algebra over ¢ splitting except at the two places of ¢ corresponding to p. We chose an ¢ so that
G(kVO) =~ PU(2,1) for one Archimedean place vo of k (and G(k,) = PU(3) at the other Archimedean place v when
[k: Q] =2). For each v we found concrete conditions for an element g € G(k,) to belong to P, using lattices, as above.
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Table 1 Table 2
The cases k= Q. The cases k # Q.
l p T N #I’s k, ¢ p T N gI’s
Q(/—1) 5 9 3 1 Ca  k=Q5) 2 0 9 6
2} 3 1 ¢ =k(v=3) 3} 9 1
21 1 1
e Cio  k=Q2) 2 9 3 1
Q(/-2) 3 9 3 1 L =k(/T5+2v2) (17—} 3 1
2} 3 1
20 1 1 Cis  k=Q/6) 3 9 9 1
£=k(~/-3 {2} 3 3
QW=7) 2 ? 21 3 =3 (21} 1 1
(7} 21 4
{3} 3 2 Co  k=QK7) 2 9 21 1
3,7} 3 2 L=k(~/—=1) {3+} 3 2
(5} 1 1 (3-}) 3 2
(5,7} 1 1
Total: 19
Q(/~—15) 2 ? 3 2
{3} 3 3
{5} 3 2
(3.5} 3 3
Q(v-23) 2 9 1 1
(23} 1 1
Total: 31

Computer searches (particularly lengthy in the C;o case) were then done to find sufficiently many elements of I" to contain
a generating set S. To verify that S generates I", we first calculated the radius ro and then the volume of the Dirich-
let fundamental domain of the subgroup (S) generated by S. We checked that this volume matches the covolume of I,
known from [11], so that (S) = I". We then enumerated the set of g € I" such that d(g(0),0) < 2rg. We used this to
(i) find a presentation of I" and (ii) list a set of representatives of the conjugacy classes of torsion elements in I". We then
used Magma (see http://magma.maths.usyd.edu.au/magma/) and GAP (see http://www.gap-system.org) to find all conjugacy
classes of subgroups IT of I" with the requisite index N. We used (ii) to check which of these were torsion-free. We verified
that the abelianization of IT was finite in each case. In the matrix algebra cases, we found finite subgroups K of I and
used the fact that if /7 is a torsion-free subgroup of I" then K acts on I"/IT without fixed points to exclude the exis-
tence of IT of index N and finite abelianization. Many of our results are dependent on computer programs we wrote (see
http://www.maths.usyd.edu.au/u/donaldc/fakeprojectiveplanes/).

As an example, let us give some details for the class corresponding to k = Q, £ = Q(+/—7) and 77 = {7}. Let m = Q(¢),
where ¢ = e271/7 which is a degree 3 extension of ¢ with Galois group Gal(m/¢) = (), where @(z) = ¢2. Let D be the
central simple algebra over ¢ generated by m and o, with 03 = (3 4+ +/=7)/4 and ox = @(x)o for x € m. There is an
involution tg of D of the second kind which maps ¢ to o~! and ¢ to £~!. We replace g by ¢ : & = w~li(&)w, where
w=1¢+¢"!, to get the desired behaviour G(R) = PU(2,1). Then I is generated by ¢ and b= 1Y (Y __ bytick
for coefficients —9,-3,6,—-4,1,-2,1,-2,-3,—-1,-5,3,-3,-8,2,2,—4, —6 in the order by _1,bo0,bo.1,b1,-1,..., b5 1.
Mumford’s original plane is contained in this class.
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