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RESUME

Dans cette Note, nous considirons les équations différentielles stochastiques rétrogrades
avec le temps aléatoire de défaut. Les équations sont dirigées par mouvement brownien
ainsi qu'une martingale mutuellement indépendants apparaissant dans un cadre de
defaut. Nous montrons que ces équations ont des solutions uniques et un théoréme de
comparaison pour leurs solutions. Comme une application, nous obtenons une stratégie de
point-selle pour le jeu associé différentiel stochastique a somme nulle.

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version francaise abrégée

Dans cette Note, nous modelons un risque de défaut utilisant I'EDSR avec le temps aléatoire de défaut, voir (1) pour la
forme générale d’EDSR avec le temps aléatoire de défaut. Nous montrons les résultats suivants.

Théoréme 0.1. Supposons que g satisfait (a) et (b), alors pour toute condition terminale £ (Hy) € L2(Gr; R™), EDSR (1) a une solution
unique, c.d-d., il existe un triple unique de processus G¢-adaptés

(Ye. Zt, &) € S5(0. T; R™) x LE(0, T; R™?) x LZT (0, T; R™)

satisfaisant (1).
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Théoréme 0.2. Supposons que £, & satisfont les méme conditions que dans Théoréme 0.1, g satisfait (a), gs € ng (0, T; R). Soit
(Y, Z,0), (Y, Z,Z) les solutions uniques de (2), (3) respectivement. Si

E>&, gt Y, 2:,8)>&. ae, as.,
alors
Y=Y, ae., as.

De plus, le texte suivant est vrai (le théoréme de comparaison stricte) :

Yo=Yo & &=, gt Ye,Zt, &) =g

Comme une application des résultats ci-dessus, nous obtenons une stratégie de point-selle pour le jeu associé différentiel
stochastique a somme nulle dans un cadre de defaut.

1. Introduction

Credit risk is a kind of the most dangerous financial risk. Particularly in recent years it has been greatly concerned once
more. The most extensively studied form of credit risk is the default risk, that is, the risk that a counterpart in a financial
contract will not fulfill a contractual commitment to meet her/his obligations stated in the contract. Many people, such as
Bielecki, Jarrow, Jeanblanc, Kusuoka and so on, have worked on this subject (see e.g. [2,3,6,8,9]).

It is well known that, in the framework of Brownian filtration, the general form of BSDE was firstly studied by Pardoux
and Peng [11]. Since then, the theory of BSDEs has been studied with great interest. One of the achievements of this theory
is the comparison theorem. It is due to Peng [13] and then generalized by Pardoux and Peng [12], El Karoui et al. [5]. It
allows to compare the solutions of two BSDEs whenever we can compare the terminal conditions and the generators. With
these results, BSDEs can be applied to solve stochastic differential game problems, see e.g. [4,7].

In this Note, we present a new approach (i.e., BSDE with random default time) to model default risk. In fact, this type
of BSDEs appears very naturally when dealing with the hedging/pricing problem (see [14]) and the utility maximization
problem (see Bielecki et al. [2]) in a defaultable setting. For these equations, we prove an existence and uniqueness result
as well as a comparison theorem. It should be noted here that, the comparison theorem needs one more condition for the
generator than the existence and unique theorem, which is different from the classical case.

The Note is organized as follows: in Section 2, we list some notations and assumptions. In Section 3, we mainly study
BSDEs with random default time. As an application, in Section 4 we solve a zero-sum stochastic differential game problem
in a defaultable setting.

2. Notations and assumptions

Let {B¢; t > 0} be a d-dimensional standard Brownian motion on a probability space (§2, F, P) and (F¢)¢>0 be its natural
filtration. Denote by | - | the norm in R™,
Let {t;; i=1,2,...,k} be k nonnegative random variables satisfying

P(ti>0)=1, P(ti>t)>0, VteR,, P(m=t1)=0 (i#])).

For each i, we introduce a right-continuous process {H!; t > 0} by setting Hi := 1(5,<;} and denote by H' = (H});>o the
associated filtration H! = o (H.: 0<s<t).

Just as in the general reduced-form approach, for fixed T > 0, there are two kinds of information: one from the assets
prices, denoted by F = (F¢)ogt<1, and the other from the default times {z;; i=1,2,...,k}, denoted by {]HI"; i=1,2,...,k}
from the above. The enlarged filtration considered is denoted by G = (Gt)ogr<T Where Gy = F¢ vH[l \Y, th \VARE \/H’{, which
indicates that each t; is a G-stopping time but not necessarily an F-stopping time in the general case.

Now we assume the following (see [9]):

(A) There exist F-adapted processes y' >0 (i =1,2,...,k) such that M} := Hl — [{ 1{z=5¥ids (i=1,2,...,k) are
G-martingales under P.

(H) Every F-local martingale is a G-local martingale.

It should be mentioned that (H) is a very general and essential hypothesis in the area of enlarged filtration (see [10]).

The following are just for the sake of simplicity:

(i) notations of vectors:
He = (H{ HE o HEY, Me= (MEUME L MY Voo Ve = (o =00 1o ), where () s the
transpose;

(ii) notations of sets: L2(Gr; R™):={£ € R™ | £ is a Gr-measurable random variable such that E|§|? < +o0},
ng(O, T;R™) :={p: 2 x[0,T] > R™ | ¢ is G;-progressively measurable and EfOT l@¢ |2 dt < 400},

Sé(O, T;R™) :={p:2 x[0,T] - R™| ¢ is G;-progressively measurable and E[supo<,;<T l@¢]?] < 400},
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ngkf (0, T; Rmxky .= {go 1 2 x [0,T] - R™k | ¢ is progressively measurable and EfOT 1@e)? 1 (rogy ye dt = EfOT Y x
i1 9jiel 1=y ¥ dt < 400}

3. BSDE with random default time

This section discusses BSDEs with random default time of the following general form:
T T T

Ytzg(HT)‘i‘/g(s» Ys, Zs, fs)ds_/zsst_/fdey (1)
t

t t

The function g is called the generator of (1). We assume that g(w,t,y,z,¢): 82 x [0, T] x R™ x R™xd x gmxk _, gm
satisfies the following conditions:

(a) £(,0,0,0) € LZ (0, T; R™);
(b) the Lipschitz condition: for each (t,y,z, ¢), (t,y,2,¢) €[0,T] x R™ x Rmxd 5 RM*k there exists a constant C > 0 such
that

gt y.2,6) —8t.5.2.5)| <C(ly =Vl +1z—Zl + |5 — ST z=ty/Vr)-

Our object is to find a triple (Y, Z, &) € S5(0, T; R™) x L (0, T; R™?) x ng’T(O, T: R™*k) satisfying (1). For this, we
have the following existence and uniqueness theorem:

Theorem 3.1 (Existence and Uniqueness Theorem). (See [14, Theorem 3.1].) Assume that g satisfies (a) and (b), then for any fixed
terminal condition £(Hr) € L>(Gr; R™), BSDE (1) has a unique solution, i.e., there exists a unique triple of G¢-adapted processes

(Ye. Ze, &) € S5(0. T; R™) x LE(0, T: R™?) x LZT (0, T; R™)
satisfying (1).

Remark 3.2. The solution of (1) is unique, that is to say, if both (Y, Z,¢) and (Y, Z,2) € Szg(O, T; R™) x ng(O, T; Rm>d) x
LET (0, T: R™<K) satisfy (1), then

T T T
Efm—mzdt:o, E/|zt—2t|2dt=0, E/|§t—§:t|21{r>t}ytdf=0~
0 0 0]

Consider the following two 1-dimensional BSDEs with random default time:

T T T
Yt:E(HT)'i‘fg(s, Ys, Zs, (s)ds_/zsst—/Cdes, (2)
t t t
T T T
?tzé(HT)+/gsd5—/zsst—/stMs' (3)
t t t

For the generator function g, we introduce one more assumption: ,
(c) for each (t,y,2) € [0, TI x R x RY, (¢, &) e RK x RK, (¢ — &)1~ ¥ # 0, the following holds:

g(t!y7z7 §i_1) —g(t,y,Z,S’:i) -
(6T = SN0 ¥
where &= (&1, 22,..., &1, ¢t 2 . k) and ¢! is the i-th component of ¢.

-1,

Theorem 3.3 (Comparison Theorem). (See [14, Theorem 3.2].) Suppose &, £ satisfy the same assumptions as in Theorem 3.1, g satisfies

(a)-(c), gs € Lé(O, T;R). Let (Y, Z,¢), (Y, Z, ¢) be the unique solutions of (2), (3) respectively. If

E=E, gt ,Ye,Zt,&) > &, ae., as.,
then

Y > Y:, ae,as.
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Besides, the following holds true (the strict comparison theorem):
Yo=Y & &=§, 8, Ye, Ze, &) = &t

Remark 3.4. Condition (c) for the generator g is significant for the comparison theorem. In [14], an example shows that the
strict comparison theorem will not hold if g does not satisfy (c).

4. Application in zero-sum stochastic differential game problem

Assume here that m=d =k and y; > 0 is bounded. Let xp € R™ and let X; be the unique solution of the following
stochastic differential equation:

t t

Xe =0 +/o(s, Xs_)dBs + f (s, Xs-) Mg,
0 0
where the mapping o : [0, T] x R™ — R™*™ and « : [0, T] x R™ — R™*™ satisfy the following assumptions:

(i) for 1 <1i, j <m, oj; and «;; are progressively measurable;
(ii) for any (t, x) € [0, T] x R™, there exists a constant C; > 0 such that |o (t, x)| + |k (¢, X)| < C1(1 + |X]);
(iii) for any (t,x), (t,y) € [0, T] x R™, there exists a constant C; > 0 such that |o(t,X) — o (t, y)| + |k (t,X) — k(t, y)| <
Calx = yl;
(iv) o (t,x), k(t,x) are invertible and o ~1(t, x), k ~1(t, x) are bounded.

Let U (resp. V) be a compact metric space and U (resp. V) be the space of all progressively measurable processes
u = (Ur)eefo,1] (resp. v = (V¢)tepo,t1) with values in U (resp. V).
Let the drift function b map [0, T] x R™ x U x V into R™. Furthermore, b is supposed to satisfy

(i) b is B([0,T] x R™ x U x V)-measurable;
(ii) b(t,x,u, v) is bounded for any (t,x, u, v);
(iii) for any (t,x) € [0, T] x R™, b(t, x, -,-) is continuous on U x V.

Now for each u e, v € V, let L*'V be the positive local martingale solution of
t

th.l,v =1+ / L;’,_v (O'_l (s, Xs—)b(s, Xs_, us, vs) dBs + Kk (s, Xs—)e(s, Xs—, us, vs) dMS)’

0
wh{sre for any (t,x,u,v),i=1,2,...,m, the i-th component OfK_l(t,X)C(t, X,u,v) is larger than —1, i.e,, (k=1 x)c(t, x, u,
) > —1.

According to the Girsanov Theorem (see [9, Proposition 3.1] or [3, Proposition 3.2.2]), P*:V defined by %WT = L%V
is a probability measure equivalent to P. Moreover, under P":V, the process Bf"’ =B — fota‘1 (s, Xs_)b(s, Xs_, ug, vs)ds
is a Brownian motion, the processes My™"' = Mi — fot(fc‘1(s,X5_)c(s,Xs_,uS,vs))il(ri>s}ysids i=1,2,...,m) are G-
martingales orthogonal to each other and orthogonal to Bf*’. Then (X)o<t<T Satisfies

t t t
X =xo+/(b(s, Xs—, Us, Vs) + ¢S, Xs—, Us, Vs) Tz ¥s) d5+/0(s,X5_)dB§"V +/K(S,Xs_)dM§"V.
0 0 0

It means that (X;)og¢<T iS @ weak solution for the above stochastic differential equation and it stands for an evolution of a
controlled system.

It is well known that in zero-sum game problems, there are two players J; and J,. We suppose that Ji (resp. J2)
chooses a control u(t,x) € U (resp. v(t,x) € V). Now we introduce two functions f:[0,T] x R™ x U x V — Ry, satisfying
the same assumptions as b, and h : {0, 1} x R™ — R, which is measurable, bounded. Let E*:V denote the expectation w.r.t.
P":V. Then the cost functional, which is a cost (resp. reward) for J; (resp. J»), corresponding to u €/ and v € V is given
by

T
Jo = Eu,v|:/ f(s, Xs,us, vs)ds +h(Hr, XT)i|~
0

The object of J; (resp. J») is to minimize (resp. maximize) the cost functional. In this zero-sum game problem, we aim
at showing the existence of a saddle point, more precisely, a pair (*, v*) such that J(@*, v) < J(@*, v*) < J(u, v*) for each
(u,v) eld x V.
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Thus let us define the Hamilton function associated with this game problem as following: V(t,x,z, ¢,u,v) € [0, T] x
RT"xR"xR™"x U x V,
H(t,x, 2, 6, u,v) i=z0 1 (t, X)b(t, X, u, v) + gk~ (£, X0)c(t, X, u, V) 1zt ¥t + F(E, %, U, V).

Here we should pay special attention to the difference between the notations of the Hamilton function H(t, -, -, -, -,-) and
the default process H;.

Next assume that Isaacs’ condition, which plays an important role in zero-sum stochastic differential game problems, is
fulfilled, i.e., for any (t,x,z,¢) € [0, T] x R™ x R™ x R™,

inf supH(t,x,z,¢,u,v)=supinf H(t,x,z, ¢, u,v).
uel yev vev uel

Under the above Isaacs’ condition, through the assumptions above and Benes’s selection theorem (see e.g. [1]), the
following holds true (see e.g. [4]):

Proposition 4.1. There exist two measurable functions u*(t, x, z, <), v*(t, x, z, ¢) mapping from [0, T] x R™ x R™ x R™ into U, V
respectively such that

(i) the pair (u*, v*)(t, x, z, <) is a saddle point for the function H, i.e.,
H(t,x,z, ¢, u*(t,x,2,6),v*(t,x,2,¢)) <H(t,x,z, ¢, u,v*(t,x,2,¢)), Vuel,

H(t.x,z, ¢, u*(t,Xx,2,6), v¥(t,X,2,6)) > H(t,x,z, g, u*(t.X,2,6),v), VveV;
(ii) the function (z, ¢) — H(t,x,z, ¢, u*(t,x, z, ¢), v*(t, X, z, ¢)) satisfies (b) and (c), uniformly in (t, x).

Now we introduce two notations just for simplicity:
H(t,z.¢):=H(t. Xc—.z, G, ue, vo);  H*(t.z,¢) :=H(t. Xe—. 2, ¢.u™(t, X~ 2, §), V¥(t, Xr—. 2, ©)).

Suppose that J1 (resp. J») has chosen u € U (resp. v € V). The conditional expected remaining cost from time t € [0, T] is

T
j;"’v = ngv |:/ f(s, Xs,us, vs)ds +h(Hr, XT)i|'
t

It is obvious that jg‘v = J*V. The following theorem tells us that the conditional costs can be characterized as solutions of
BSDEs with random default time:

Theorem 4.2. (See [14, Theorem 4.1].) The BSDE with random default time
T T T

Yt=h(HT7XT)+/H(Sy Zs»fs)ds_/ZSst_/gdes
t

t t

has a unique solution (Y, Z,¢) € sé(o, T:R) x ng(o, T;R™) x ng”(o, T; R™) satisfying Y, = J".
Next is the main result of this part:

Theorem 4.3. (See [14, Theorem 4.2].) The BSDE with random default time
T T T

Yt:h(HLXT)"‘/H*(S, Zs, fs)ds_/zsst_/é‘des
t

t t
has a unique solution (Y, Z, ¢) € Sé(O, T;R) x ng(O, T;R™) x ng’f(O, T; R™) satisfying

Yt = ]?*’f/*’
where U* (t, Xe—) = u*(t, Xe—, Z¢, &), V*(t, Xe—) = v*(t, X¢—, Zt, &). Moreover, the pair (ii*, v*) is a saddle point for the game.
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