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Abstract

We extend the classical rigidity results for K-theory to the equivariant setting of linear algebraic group actions. These results
concern rigidity for rational points, field extensions, and Hensel local rings. To cite this article: S. Yagunov, P.A. Østvær, C. R.
Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Théorèmes de rigidité classiques pour la K-théorie. Nous étendons les théorèmes de rigidité classiques pour la K-théorie
au cadre équivariant de actions des groupes algébriques linéaire. Ces résultats concernent la rigidité pour les points rationels, les
extensions de corps et les anneaux locaux henséliens. Pour citer cet article : S. Yagunov, P.A. Østvær, C. R. Acad. Sci. Paris, Ser. I
347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Soit F un foncteur contravariant de la catégorie des schémas lisses quasi-projectifs de type fini sur un corps infini k

à valeurs dans la catégorie des modules. La propriété de rigidité est vérifiée pour F si, pour tout schéma intègre X de
type spécifié, deux sections σ0, σ1 : Speck → X du morphisme structural X → Speck induisent des homomorphismes
égaux σ ∗

0 = σ ∗
1 : F (X) → F (Speck).

Pour un groupe algébrique linéaire G sur k et un k-schéma G-équivariant de type fini V , prenons pour F le K-fonc-
teur G-équivariant à coefficients finis K∗(G,V ×k −;Z/n), où (n,Chark) = 1. Nous montrons que la propriété de
rigidité est vérifiée pour un tel foncteur F si et seulement si elle est vérifiée dans le cas particulier où X est une droite
affine munie des sections induites par les points 0 et 1.

Une conséquence de ce théorème est que si V est lisse, alors notre foncteur est invariant pour les changements de
base suivants : extensions de corps algébriquement clos et déformations infinitésimales (i.e. morphismes des anneaux
locaux henséliens vers leur corps résiduels).

E-mail addresses: yagunov@gmail.com (S. Yagunov), paularne@math.uio.no (P.A. Østvær).
1631-073X/$ – see front matter © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crma.2009.10.020
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1. Introduction

For k an infinite field and G a linear algebraic group over k, let Smk denote the category of smooth quasi-projective
k-schemes of finite type and fix some V in the category SchG

k of G-equivariant separated k-schemes of finite type and
G-maps. The latter data entails a G-action σ :V × G → V subject to the usual associative and unital identities for a
group action. The abelian subcategory of G-modules on V comprising coherent OV -modules and its exact subcategory
of locally free OV -modules, a.k.a. G-vector bundles on V , gives rise to the G-equivariant K ′-theory (respectively K-
theory) of V . When G is the trivial group, this reduces to ordinary K ′- and K-theory. Throughout we consider mod-n
coefficients for n > 0 relatively prime to the exponential characteristic of k, and assume that G acts trivially on the
base fields.

Theorem (Rigidity for rational points). Suppose the field k is algebraically closed. Then the following statements are
equivalent:

(1) For every connected X in Smk with trivial G-action and any two rational points x0 and x1 on X,

x∗
0 = x∗

1 : K∗(G,V ×k X;Z/n) K∗(G,V ;Z/n).

(2) The rational points 0 and 1 on the affine line A1
k with trivial G-action yield equal pullback maps

K∗
(
G,V ×k A1

k;Z/n
)

K∗(G,V ;Z/n).

The four step proof of the theorem consists of checking that K∗(G,V ×k −;Z/n) defines a functor with weak
transfers on Smk in the sense of [9].

If V is smooth, so that the naturally induced map K∗(G,V ×k X) → K′∗(G,V ×k X) is an isomorphism for all X in
Smk due to [14, Theorem 5.7 and Corollary 5.8], then the second condition in the theorem holds because K ′-theory
is homotopy invariant [14, Theorem 4.1], cf. Lemma 2.3. Although G acts trivially on X in the previous theorem we
do not assume that G acts trivially on V . The following result generalizes the main theorem in [11]:

Theorem (Rigidity for field extensions). Suppose K/k is an extension of separably closed fields, (V ,σ ) ∈ SchG
k is

smooth, and n > 0 is as above. With the induced G-action σ × idK on the base change scheme VK ≡ V ×k K the
natural G-map VK → V induces an isomorphism

K∗(G,V ;Z/n)
∼= K∗(G,VK ;Z/n).

Proof. To begin with we assume that the fields are algebraically closed. If a Noetherian G-scheme X is the inverse
limit of a system {Xα} of Noetherian G-schemes with flat affine transition maps, then K′∗(G,X) ∼= colimα K′∗(G,Xα),
as Thomason noted in [15, §3.7] (in fact, the category of coherent G-modules on X is the 2-colimit of the categories
of coherent G-modules on the Xα’s). Our claim follows now as in the proof of [9, Theorem 1.14] by combining
rigidity for rational points and Lemma 2.3 (viewing SpecK as an inverse limit of smooth affine k-schemes with
trivial G-actions). The argument in [10, §7, Proposition 4.8] shows that purely inseparable extensions of degree pd

induce isomorphisms on K∗(G,−;Z/n) with (n,p) = 1. Replacing separably closed field with their algebraic closures
completes the proof. �

The last of our main results deals with rigidity for equivariant K-theory of Hensel local rings. For non-equivariant
results we refer to [2,3,13].

Theorem (Rigidity for Hensel local rings). Suppose k is an infinite field, (V ,σ ) ∈ SchG
k is smooth, and n > 0 is as

above. If P ∈ X(k) is a rational point on X ∈ Sm, let Oh
X,P denote the corresponding Hensel local ring. Then there

is a natural isomorphism

K∗
(
G,V ×k Oh

X,P ;Z/n
) ∼= K∗(G,V ;Z/n).
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In order to prove this result we basically check that the conditions in [6] are satisfied.
If G is reductive and k has characteristic zero, then representations of G are direct sums of irreducible represen-

tations. It follows that there exists an isomorphism between K∗(G, k) and K∗(k) ⊗Z R(G), where R(G) denotes the
representation ring of G. Hence Suslin’s computation of the K-groups K∗(k;Z/n) [12] implies there is an isomor-
phism K∗(G, k;Z/n) ∼= R(G)/n[β]. Here β is the Bott element in K∗(k;Z/n) of degree 2. Using rigidity for field
extensions, as stated in the above, Krishna has deduced a more general computation in the recent work [7].

2. Proofs

Proof (Rigidity for rational points). For legibility, let P G denote the category of G-vector bundles of finite rank and
BQ the classifying space of Quillen’s Q-construction [10]. We write

F (−) ≡ π∗+1
(
BQ P G(V ×k −);Z/n

)
: (Smk)

op → Ab

for the functor K∗(G,V ×k −;Z/n) in the formulation of the theorem. Assuming that (2) holds, we show F (−)

acquires weak transfers for the class Cff of finite flat maps in the sense of [9].

Lemma 2.1. If f :X → Y is a finite flat map in Smk then the direct image functor induces a transfer map f∗ : F (X) →
F (Y ).

Proof. The assumption on f implies that F = idV ×kf :V ×k X → V ×k Y is a finite flat map. This shows [4,
Theorem 3.2.1, Corollary 1.3.2] the direct image map F∗ is an exact functor on the category of coherent G-sheaves on
X. In this situation it suffices to verify that F∗ preserves locally free sheaves. The latter statement is local, so it suffices
to consider affine schemes. Given a Noetherian ring R, a finite flat algebra S over R and a projective S-module P ,
we wish to show that P is a projective R-module. It suffices to show that HomR(P,−) 	 HomS(P,HomR(S,−))

is an exact functor. This follows by combining the standard facts that S is a projective R-module according to [8, I,
Theorem 2.9], P is a projective S-module and the composition of two exact functors is an exact functor. �
Remark 1. Since we require transfer maps for a very restricted class of morphisms, we may avoid using higher direct
images and Tor-formulas as in Quillen’s general transfer construction [10, §7].

Secondly, we need to verify the additivity, base change, and normalization conditions formulated in [9].

Remark 2. For our purposes it suffices to check the base change property only for closed embeddings. Therefore, our
form of this property is less general than in [9].

(i) Additivity: For X = X0 
 X1 with corresponding embeddings im :Xm ↪→ X for m = 0,1 and f :X → Y a map
in Smk , then

f∗ = (f i0)∗i∗0 + (f i1)∗i∗1 .

(ii) Base change: For every Cartesian square

X′ g̃

f̃

Y ′

f

X
g

Y

where f ∈ Cff and g is a closed embedding, one has g∗f∗ = f̃∗g̃∗.
(iii) Normalization: If f is the identity map on k, then f∗ = idF (k).

The direct and inverse image functors are natural G-maps so that the isomorphisms appearing in the proof of the
base change property below are in fact G-isomorphisms. Thus the additivity condition follows immediately by using
additivity of the direct image functor.
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Next we show that g∗f∗ = f̃∗g̃∗ for the maps in the Cartesian diagram. To wit, for a locally free sheaf S on Y ′,
the adjunction between left adjoint inverse image functors and right adjoint direct image functors furnishes canonical
elements α ∈ HomY ′(S, g̃∗g̃∗(S)) and β ∈ HomY ′(f ∗f∗(S), S). Moreover, there are canonical isomorphisms

HomY ′
(
f ∗f∗(S), g̃∗g̃∗(S)

) ∼= HomX′
(
g̃∗f ∗f∗(S), g̃∗(S)

)
∼= HomX′

(
f̃ ∗g∗f∗(S), g̃∗(S)

)
∼= HomX

(
g∗f∗(S), f̃∗g̃∗(S)

)
.

The image of the composite αβ ∈ HomY ′(f ∗f∗(S), g̃∗g̃∗(S)) under these isomorphisms determines a map of sheaves
on X

α̃β :g∗f∗(S) f̃∗g̃∗(S).

Using the assumptions on f and g one verifies easily that α̃β is a fiberwise isomorphism. Hence α̃β is a sheaf
isomorphism. This completes the proof of the base change property.

Finally, the normalization condition holds trivially.
In order to finish the proof it remains to note that the maps appearing in [9, §1] belong to Cff, and moreover that

the base change diagrams in [9, §1] are of the type above (with respect to some closed embedding). These conditions
hold according to the following elementary result:

Lemma 2.2. If X is a smooth projective irreducible curve over a field and f :X → P1 a dominant morphism (i.e. a
non-constant rational function on X), then f ∈ Cff.

Proof. This is a special case of [5, III, Proposition 9.7]. �
The proof of rigidity for rational points is now complete. �
The second condition in the rigidity for rational points result serves as a “replacement” for homotopy invariance.

A functor F : (SmG
k )op → Ab is homotopy invariant for X if the canonical projection map p :X ×k A1

k → X induces
an isomorphism p∗ :F(X) → F(X ×k A1

k). (Here and below G acts trivially on the affine line A1
k .)

Lemma 2.3.

(1) If F is homotopy invariant for X, then the rational points 0 and 1 on the affine line over k yield equal pullback
maps

F(X ×k A1
k) F (X).

(2) If

i∗0 = i∗1 :F(Y ×k A1
k) F (Y )

holds for Y = X ×k A1
k , then F is homotopy invariant for X.

Proof. Part (1) holds since the composite map X
i→ Y

p→ X is the identity. In order to prove (2) we use the diagram

F
(
X ×k A1

k

) μ∗
F

(
X ×k A1

k ×k A1
k

) i∗0

i∗1
F

(
X ×k A1

k

)
.

Here μ∗ is induced by the product map μ : A1
k ×k A1

k → A1
k while the maps i∗0 and i∗1 are induced by the rational points

0 and 1 on A1
k . By hypothesis, the composite maps in the diagram coincide. The map involving i∗1 is the identity and

i0μ equals the composite Y
p→ X

i→ Y . Hence i∗ is inverse to p∗. �
As noted in the introduction, the proof of rigidity for extensions is now complete.
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Proof (Rigidity for Hensel local rings). The Additivity and Normalization properties stated in [6] coincide with the
those this Note, while the base change diagrams in [6] are also of the type considered here (with respect to some
closed embedding), cf. Remark 2. This shows that with our formulation of the base change property, the approach in
[6] can be adopted verbatim. In [6] one also requires transfer maps (trace homomorphisms) for finite separable field
extensions. It remains to note that such extensions induce maps between schemes in Cff. Besides these conditions one
should also verify validity of Gersten’s conjecture in the equivariant case. This can be done following the approach
of [1]. �
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