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Abstract

We introduce a time-space two-scale transform designed to capture the high and low frequency waves in the asymptotics of
the periodic homogenization of the wave equation. The asymptotical solution is the sum of the solution of known homogenized
equations and of Bloch waves. We also derive the transport equations satisfied by the Bloch wave coefficients. To cite this article:
M. Brassart, M. Lenczner, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Un modèle à deux échelles pour l’équation des ondes à coefficients et données oscillants. Nous introduisons une trans-
formation à deux échelles en espace et en temps destinée à capturer à la fois les basses fréquences et les ondes de Bloch qui
apparaissent lors du processus asymptotique d’homogénéisation de l’équation des ondes à coefficients périodiques. La solution du
modèle qui en résulte comprend les ondes de Bloch et une contribution basse fréquence qui est la solution du modèle homogénéisé
de l’équation des ondes. On établit aussi les équations de transport vérifiées par les coefficients des ondes de Bloch. Pour citer cet
article : M. Brassart, M. Lenczner, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. The wave equation as a first-order system

Let Ω be an open subset of R
N with bounded Lipschitz boundary ∂Ω , and let I = [0, T ) ⊂ R

+ be a finite time
interval. We fix a splitting of ∂Ω into two disjoints parts ΓD and ΓN where Dirichlet and Neuman boundary conditions
are applied. We consider uε(t, x) solution to a linear scalar wave equation with periodic coefficients and oscillating
data,

ρε∂2
t t u

ε − div
(
aε∇uε

) = f ε in I × Ω,

uε(t = 0) = uε
0, ∂tu

ε(t = 0) = vε
0 in Ω,

uε = gε on I × ΓD, aε∇uε.nΩ = hε on I × ΓN. (1)
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As usual in periodic homogenization theory, aε(x) = a(x
ε
), ρε(x) = ρ(x

ε
), where a(y) is a symmetric matrix and ρ(y)

is real-valued, both being Lipschitzian and Z
N -periodic on R

N. Moreover, we require the standard uniform positivity
and ellipticity conditions to hold, i.e. 0 < ρ0 � ρ(y) � ρ1 < ∞ and 0 < a0 � a(y) � a1 < ∞. Setting

Uε =
( √

aε∇uε

√
ρε∂tu

ε

)
, F ε =

(
0

f ε/
√

ρε

)
, Uε

0 =
(√

aε∇uε
0√

ρεvε
0

)
,

Gε =
(

1ΓD
∂tg

ε
√

aεnΩ

1ΓN
hε/

√
ρε

)
, Aε =

⎛
⎝ 0

√
aε∇( 1√

ρε .)

1√
ρε div(

√
aε.) 0

⎞
⎠ ,

nε
A = 1√

ρε

(
0

√
aεnΩ√

aεnΩ 0

)
,

we recast the scalar wave equation (1) as a first-order system of size N + 1,(
∂t − Aε

)
Uε = Fε in I × Ω,

Uε(t = 0) = Uε
0 in Ω,(

nε
AUε − Gε

)
1,...,N

= 0 on I × ΓN and
(
nε

AUε − Gε
)
N+1 = 0 on I × ΓD,

which may be understood in the weak sense∫
I×Ω

(
Fε.ψ + Uε.

(
∂t − Aε

)
ψ

)
dt dx +

∫
Ω

Uε
0 .ψ(t = 0)dx +

∫
I×∂Ω

Gε.ψ dt ds(x) = 0 (2)

for all admissible functions ψ ∈ H 1(I × Ω)N+1 such that ψ(t,·) ∈ D(Aε) = {(ϕ,φ) ∈ L2(Ω)N × L2(Ω) | √
aεϕ ∈

H div(Ω), φ/
√

ρε ∈ H 1(Ω),
√

aεϕ.nΩ = 0 on ΓN and φ/
√

ρε = 0 on ΓD} a.e. in t ∈ I and ψ(T , .) = 0.

Theorem 1. For any fixed ε, the weak formulation (2) has a unique solution Uε ∈ L2(I × Ω)N+1 for any Uε
0 ∈

L2(Ω)N+1, F ε ∈ L2(I × Ω)N+1, ∂tg
ε ∈ H 1(I ;H 1/2(ΓD)), hε ∈ H 1(I ;H−1/2(ΓN)). Moreover, Uε satisfies the

estimate ‖Uε‖L2(I×Ω) � C(‖Fε‖L2(I×Ω) +‖Uε
0 ‖L2(Ω) +‖∂tg

ε‖H 1(I ;H 1/2(ΓD)) +‖hε‖H 1(I ;H−1/2(ΓN ))) uniformly in ε.

In the sequel, we assume that the data are bounded as∥∥Fε
∥∥

L2(I×Ω)
+ ∥∥Uε

0

∥∥
L2(Ω)

+ ∥∥∂tg
ε
∥∥

H 1(I ;H 1/2(ΓD))
+ ∥∥hε

∥∥
H 1(I ;H−1/2(ΓN ))

� C, (3)

so that the solution Uε is also bounded in L2(I × Ω)N+1.

2. The wave two-scale transform

Let Y = Y ∗ = (0,1)N be a unit cell of the N -dimensional lattice L = L∗ = Z
N. Given K ∈ N

∗, we observe that
the dual lattices KL and L∗

K
satisfy L = LK + KL and L∗

K
= L∗ + L∗

K for some fundamental subsets LK ⊂ L and
L∗

K ⊂ Y ∗ of cardinal KN, such that LK ∩ (KL) = {0} and L∗
K ∩ L∗ = {0}. Also, we introduce a set YK made of KN

cells indexed by LK and translated from Y, such that YK tends to cover R
N when K increases.

Now, for any k in Y ∗, we define the functional space L2
k = {u ∈ L2

loc(R
N) | u(x + 
) = u(x)e2iπk.
 a.e. for all


 ∈ L} of k-quasiperiodic functions, and for any s � 0 we denote by Hs
k (Y ) the Sobolev space of functions on Y

whose k-quasiperiodic extension in L2
k belongs to Hs

loc(R
N). As in [2], the set L2

0(YK) of all KL-periodic L2
loc(R

N)-

functions can be described as the Hilbertian sum of KN subspaces L2
0(YK) = ⊕⊥

k∈L∗
K

L2
k , the norm in L2(YK) being

chosen as v �→ ( 1
|YK |

∫
YK

|v|2 dy)1/2.

Next, for any k ∈ Y ∗, we introduce the elliptic operators �k = 1√
ρ

divy(a∇y
1√
ρ
.) associated with the wave equa-

tion on a microscopic scale, with domains D(�k) = {φ ∈ L2(Y ) | φ/
√

ρ ∈ H 2
k (Y )}. These non-negative self-adjoint

operators with compact resolvent on L2(Y ) govern the high frequency spectral analysis of the problem. Each −�k

is reduced by a spectral Hilbertian basis (φk
n) of L2(Y ) such that φk

n ∈ H 2(Y ) and −�kφ
k
n = λk

nφ
k
n , the sequence of
k
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repeated eigenvalues (λk
n) being non-negative and non-decreasing. The kernel of −�k is null for k /∈ L∗ and one-

dimensional (generated by φ0
1) otherwise. We will enumerate the spectral elements (φk

n) by n ∈ M
+
k where M

+
k = N

∗
for k /∈ L∗ and M

+
k = N

∗ − {1} otherwise, so that in either case φk
n /∈ Ker(Ak) if n ∈ M

+
k . We extend these sets by

symmetry, i.e. Mk = Z
∗ for k /∈ L∗ and Mk = Z

∗ − {−1,1} otherwise. The eigenvectors (kernel excepted) of the
microscopic scale operator

A =
⎛
⎝ 0

√
a∇y(

1√
ρ
.)

1√
ρ

divy(
√

a.) 0

⎞
⎠ are ek

n = 1√
2

⎛
⎝ −isn

√
a√

λk|n|
∇y(φ

k|n|/
√

ρ)

φk|n|

⎞
⎠

for n in Mk and sn denoting the sign of n. The orthogonal projectors in L2(Y )N+1 onto span(ek
n) and onto

span({ek
n}n∈Mk

) are denoted by Πk
n and Πk. Viewed as a family of quasi-periodic functions, {ek

n | k ∈ L∗
K, n ∈ Mk}

constitutes a Hilbertian basis of L2(YK)N+1.
Let us introduce our space two-scale transform. We first split the physical domain Ω into a number of εY -cells ω

up to a small left-over region Ω − Ωε near the boundary ∂Ω by setting Ωε = ⋃
Cε , where Cε = {ε
 + εY | 
 ∈ L,

ε
+εY ⊂ Ω} is the set of all cells fully contained in Ω. For any k ∈ Y ∗, we then define the modulated space two-scale
transform Sε

k : L2(Ω) → L2(Ω × Y) by Sε
ku(x, y) = ∑

ω∈Cε
u(ε
ω + εy)e−2iπk.
ω1ω(x), where ε
ω ∈ εL stands for

the unique node of ω. Likewise we introduce a time two-scale transform. Taking Z ⊂ R as a canonical lattice and
Λ = [0,1) as a canonical unit cell, we set Iε = ⋃

C+
ε , where C+

ε = {ε
 + εΛ | 
 ∈ Z, ε
 + εΛ ⊂ I } is the family of
all εΛ-cells contained in I, and we define our time two-scale transform T ε : L2(I ) → L2(I × Λ) by

T εu(t, τ ) =
∑
θ∈C+

ε

u(ε
θ + ετ)1θ (t),

where ε
θ ∈ εZ stands for the left end point of θ . Finally, we combine the space two-scale transform and the spectral
decomposition of L2(Y )N+1 together with the (parameterized) time two-scale transform, to define our one-fibered
wave two-scale transform Wε

k : L2(I × Ω)N+1 → L2(I × Λ × Ω × Y)N+1 by

Wε
k = 1L∗(k)

(
1 − Π0)Sε

0 +
∑

n∈Mk

T
2πε/

√
λk|n|Πk

nSε
k .

Extending by quasi-periodicity the images of each Wε
k from L2(Y ) to L2(YK) yields our multi-fibered wave two-scale

transform Wε = ∑
k∈L∗

K
Wε

k .

Lemma 2. The transforms Wε
k and Wε are contractions, in the sense∥∥Wε

k U
∥∥2

L2(I×Λ×Ω×Y)
� ‖U‖2

L2(I×Ω)
and

∥∥WεU
∥∥2

L2(I×Λ×Ω×YK)
� ‖U‖2

L2(I×Ω)
.

A straightforward consequence is that WεUε ∈ L2(I × Λ × Ω × YK)N+1 has limit points UK in the weak conver-
gence of L2(I ×Λ×Ω ×YK)N+1 as ε tends towards zero, because Uε ∈ L2(I ×Ω)N+1 remains uniformly bounded
in ε.

3. The two-scale model for waves

Consider the macroscopic field u0 solution to the homogenized scalar problem of [3],

ρ0∂2
t t u

0 − divx

(
a0∇xu

0) = f 0 in I × Ω,

u0(t = 0) = u0 and ∂tu
0(t = 0) = v0 in Ω,

u0 = g on I × ΓD, a0∇xu
0.nΩ = h on I × ΓN,

with ρ0 = ∫
Y

ρ dy, f 0 = limε

∫
Y

Sε
0f ε dy weakly in L2(Ω), u0 = limε uε

0, v0 = limε

∫
Y

ρSε
0vε

0 dy/
∫
Y

ρ dy weakly in
L2(Ω), g = limε gε in L2(ΓD), h = limε hε in L2(ΓN) and with the usual definition of the homogenized matrix a0.
We set q0 = √

ρ∂tu
0 and p0 = √

a(∇xu
0 + ∇yu

1), where u1 is the usual corrector in the homogenization method,
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so that ∇yu
1 is uniquely defined from ∇xu

0. For each k and n, we denote by Uk
n ∈ L2(I × Ω) the amplitude of the

Bloch wave ek
n(y)e2iπsnτ . It is a (non-unique) solution to the first-order system

∂tU
k
n − sn

∑
m∈Mk, λ

k
m=λk

n, sn=sm

κnm.∇xU
k
m = Fk

n in I × Ω,

Uk
n (t = 0) = Uk

0n in Ω,

with coefficients, right-hand side and initial condition given by

κnm = i

2
√

λk|n|

∫
Y

φk|m|√
ρ

a∇y

(
φ̄k|n|√

ρ

)
− φ̄k|n|√

ρ
a∇y

(
φk|m|√

ρ

)
dy ∈ C

N,

F k
n = lim

ε

∫
Λ

e−2iπsnτ

∫
Y

Wε
k F ε.ek

n dy dτ, and Uk
0n = lim

ε

∫
Y

Sε
kU0.ek

n dy,

the limits being understood respectively in L2(I × Λ × Ω × Y) and L2(I × Ω × Y) weak.

Theorem 3. Fix K ∈ N
∗. If the data are bounded as in (3) then the sequence WεUε derived from the unique solu-

tion Uε ∈ L2(I × Ω) to the weak formulation (2) is uniformly bounded. The limit of any of its weakly converging
subsequence has the form

UK(t, τ, x, y) =
(

p0

q0

)
(t, x, y) +

∑
k∈L∗

K

∑
n∈Mk

Uk
n (t, x)e2iπsnτ ek

n(y) ∈ L2(I × Λ × Ω × YK)N+1.

From the two-scale limit UK we get an approximation of the actual physical field

Uε(t, x) ≈
(

p0

q0

)(
t, x,

x

ε

)
+

∑
k∈L∗

K

∑
n∈Mk

Uk
n (t, x)e

isn

√
λk|n|t/εek

n

(
x

ε

)
(4)

in the sense of Theorem 3.
The proof of the theorem relies on the classical two-scale testing method of [1] applied to derivatives and on the

use of our two-scale transform to deal with projections and more general kernel operators. The thrust of our Note is
precisely to mix both techniques in order to deal with fully integro-differential equations.

Remarks. (i) So far, we have not been able to derive boundary conditions for the Bloch wave coefficients Uk
n . How-

ever, it is always possible to formulate approximate boundary conditions out of approximation (4). In case where we
retain only one Bloch wave and its companion propagating in the opposite sense, we find

∂tU
k
n − ∂tU

k−n = 0 on I × ΓD and ∂tU
k
n + ∂tU

k−n = 0 on I × ΓN.

(ii) Our results are stated for any fixed K . A formal limit K → ∞ (i.e. YK → R
N ) can be performed in the model

in order to recover the complete set of Bloch waves.
(iii) The idea of this Note originated in [4] and [5].
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