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Abstract

We prove the classical Alexandroff–Bakelman–Pucci estimate for fully nonlinear elliptic equations involving singular or degen-
erate operators having as models |p|α M±

λ,Λ(X), where M±
λ,Λ are the Pucci extremal operators with parameters 0 < λ � Λ and

α > −1. To cite this article: G. Dávila et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Inégalité d’Alexandroff–Bakelman–Pucci pour des équations elliptiques entièrement non linéaires singulières ou dégéné-
rés. Nous prouvons l’inégalité classique d’Alexandroff–Bakelman–Pucci pour des équations elliptiques entièrement non linéaires
avec des opérateurs singulières ou dégénérés ayant comme modèles |p|α M±

λ,Λ(X) où M±
λ,Λ sont les opérateurs extremal de Pucci

avec des paramètres 0 < λ � Λ et α > −1. Pour citer cet article : G. Dávila et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

In this Note we establish the classical ABP estimate for fully nonlinear elliptic equations of the form

F
(∇u,D2u

) + b · ∇u
∣∣∇(u)

∣∣α + cu|u|α = f in Ω, (1)

where α > −1, Ω ⊆ R
n is a bounded domain, b, c : Ω → R

n and f : Ω → R are continuous functions. Our model
for F is the operator F(p,X) = |p|α M±

λ,Λ(X), where M±
λ,Λ are the Pucci operators. The mean curvature and the

p-Laplacian operators also satisfy our hypothesis. More generally F : (Rn \ {0})× S(n) → R is a continuous function
and it satisfies:

(H1) F(tp,μX) = |t |αμF(p,X), ∀t ∈ R \ {0}, μ ∈ R
+.
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(H2) There exists Λ � λ > 0 such that ∀p �= 0, ∀(M,N) ∈ S 2(n)

|p|α M−
λ,Λ(N) � F(p,M + N) − F(p,M) � |p|α M+

λ,Λ(N).

We also assume that |c(x)|, |b(x)| � γ , ∀x ∈ Ω , γ > 0. Here S(n) is the set of symmetric n × n matrices.
Equations in the form of (1) have been studied recently by Birindelli and Demengel in a series of papers [3–7],

where existence results, principal eigenvalues, comparison for the Dirichlet and other interesting properties are estab-
lished. In these papers the notion of viscosity solution considered is that of Chen, Giga and Goto [10] and Evans and
Spruck [12], a slight variation of the usual one, that only tests when the gradient of the test function does not vanish.
In this Note we use this notion.

The aim of this Note is to prove a basic qualitative property known as ABP estimate for (1). For the linear case
see [13] and for the fully nonlinear uniform elliptic case (α = 0), the result can be found in [8] and [9]. Precisely we
prove:

Theorem 1. Under the general conditions given above, in particular α > −1 and F satisfying (H1) and (H2), and
additionally with c � 0, there exists C = C(n,λ,α, γ,diam(Ω)) such that for any u ∈ C(Ω) viscosity sub-solution
(resp. super-solution) of (1) in {x ∈ Ω | 0 < u(x)} (resp. {x ∈ Ω | 0 > u(x)}), satisfies

sup
Ω

u � sup
∂Ω

u+ + C · diam(Ω)‖f −‖
1

1+α

Ln(Γ +(u+))

(
resp. sup

Ω

u− � sup
∂Ω

u− + C · diam(Ω)‖f +‖
1

1+α

Ln(Γ +(u−))

)
.

Here Γ +(u) = {x ∈ Ω: ∃p such that u(y) � u(x) + 〈p,y − x〉 ∀y ∈ Ω}.

Given a real number x we write x± = max{0,±x}. Here we are assuming that the coefficients and the right-hand
side of the equation are continuous functions, but in view of the work by Crandall, Caffarelli, Kocan and Swiech [9],
one could expect the result is also true for measurable ingredients. However at this point this cannot be done, since
there is no Lp notion of solution for this kind of equations.

We notice that ABP inequality implies the maximum principle for small domains, without the sign restriction on c,
as first observed by Bakelman and extensively used in [2] and many others. It will be natural to ask if ABP estimate
holds for equations having positive eigenvalue (see [1] for the linear case and [16] for the fully nonlinear case with
α = 0), in that direction we have the following partial result:

Corollary 2. Under the hypotheses of Theorem 1, but without sign constraint on c, there exist C = C(n,λ,α, γ,

diam(Ω)) and ε > 0 such that for any u ∈ C(Ω) viscosity sub-solution of (1), with c � ε, we have

sup
Ω

u � C ·
(

sup
∂Ω

u+ + diam(Ω)‖f −‖
1

1+α

Ln(Γ +(u+))

)
.

The proof of Theorem 1 is based on two regularization procedures (sup-convolution and standard mollification)
as in [9]. This approximation procedure only holds for continuous function F , so in the case −1 < α < 0 we need
some extra work, see Lemma 4. We would like to mention that after submitting this Note we have learned of papers
by Junges Miotto [15] and Imbert [14], where similar results are obtained.

Before presenting a proof of Theorem 1, it is convenient to recall the definition of solution for (1).

Definition 3. We say that u ∈ C(Ω) is a viscosity sub- (super-)solution of (1) in Ω if for all x0 ∈ Ω :

(i) Either for all ϕ ∈ C2(Ω) such that u − ϕ has a local maximum (minimum) on x0 and ∇ϕ(x0) �= 0 one has

F
(∇ϕ(x0),D

2ϕ(x0)
) + b(x0) · ∇ϕ(x0)

∣∣∇ϕ(x0)
∣∣α + c(x0)u(x0)

∣∣u(x0)
∣∣α � f (x0) (resp. �).

(ii) Or there exists a open ball B(x0, δ) ⊂ Ω , δ > 0, such that u = C in B(x0, δ) and

c(x)C|C|α � f (x) ∀x ∈ B(x0, δ) (resp. �).

Remark 1. When F is continuous, this definition is equivalent to the usual one as it is proved in [11].
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Since our approximation procedure only applies to continuous operators, we need the following lemma:

Lemma 4. Let −1 < α < 0, f � 0 and u be a sub-solution of

|∇u|α M+(
D2u

) + γ |∇u|α+1 + γ |u|α+1 = f,

in the sense of Definition 3, then for all σ > 0, u is a sub-solution of
(|∇u| + σ

)α M+(
D2u

) + γ |∇u|α+1 + γ |u|α+1 = f

in the usual sense ( from now on we omit the parameters from the Pucci operators).

Proof. In case u is not constant let ϕ ∈ C2(Ω) a test function at x0 ∈ Ω . By Remark 1 we may assume that ∇ϕ(x0) �=
0, so that in case M+(D2ϕ(x0)) � 0, we obtain

(∣∣∇ϕ(x0)
∣∣ + σ

)α M+(
D2ϕ(x0)

) + γ
∣∣∇ϕ(x0)

∣∣α+1 + γ
∣∣ϕ(x0)

∣∣α+1 � f (x0)

since α ∈ (−1,0) and u is a viscosity solution is the sense of Definition 3. If M+(D2ϕ(x0)) > 0, then we get the
inequality using that f � 0. The result in case u constant is trivial. �
Proof of Theorem 1. We only prove one inequality since M+(−X) = −M−(X), for all X ∈ S(n).

Case α > 0: First we assume that u ∈ C2(Ω) ∩ C(Ω), so that the inequality in (1) is satisfied pointwise. For
r < r0 := (supΩ u − sup∂Ω u+)/(diam(Ω)) we define the set

Γ +
r (u) = {

x ∈ Ω: ∃p ∈ Br(0) such that u(y) � u(x) + 〈p,y − x〉 ∀y ∈ Ω
}
.

It is not hard to see that Γ +
r (u) is a compact subset of Ω , that Br(0) = Du(Γ +

r (v)) and that D2u(x) � 0 in Γ +
r (u) ⊂

{0 < u}. Hence for κ � 0 the change of variable p = ∇u(x) implies

I :=
∫
Br

(|p| n
n−1 + κ

n
n−1 |p| −αn

n−1
)1−n dp �

∫

Γ +
r (u)

(|∇u| n
n−1 + κ

n
n−1 |∇u| −αn

n−1
)1−n

(
− tr(D2u)

n

)n

dx. (2)

We observe that the function under the integral sign on the right vanishes when the gradient of u vanishes. Therefore,
at points where the gradient of u does not vanish, we can multiply the inequality in (1) by |∇u|−α and then use that
D2u � 0 in Γ +

r , b(x) � γ and Hölder inequality to obtain

I � 1

nnλn

∫

Γ +
r (u)

(|∇u| n
n−1 + κ

n
n−1 |∇u| −αn

n−1
)1−n(

γ |∇u| + f −|∇u|−α
)n dx

� 1

nnλn

∫

Γ +
r (u)

(
γ n + (f −(x))n

κn

)
dx.

On the other hand, by a direct computation and using the inequality (a+b)k � 2k−1(ak +bk) which is true for a, b � 0
and k ∈ N, we obtain

22−n

n(α + 1)
ωn ln

(
rn(α+1)

κn
+ 1

)
= 22−n

∫
Br

1

|p|n + κn|p|−αn
dp �

∫
Br

(|p| n
n−1 + κ

n
n−1 |p| −αn

n−1
)1−n dp.

Then we choose κ = ‖f −‖Ln(Γ +
r (u))/λ �= 0 and we combine the last two inequalities to get r � C‖f −‖ 1

α+1 , from

where the inequality follows. If u ∈ C(Ω) we use the approximation procedure devised in [9], defining the sup-
convolution uε(x) = supy∈B(u(y) − |x − y|2/ε) of the function u, whose properties are given in detail in [9]. The
standard mollification u

ρ
ε satisfies (2) with the obvious changes and then uε also satisfies it. Here we use that Γ +

r (u)

and Γ +
r (uε) belong to a common compact set, as proved in [9]. Since uε satisfies the inequality in (1) in an approxi-

mate fashion (see Lemma A.3 in [9]) from (2) it follows the result, after taking limit as ε → 0.
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Case α ∈ (−1,0): We consider σ > 0 and we use Lemma 4 to get a continuous operator in our equation for u.
Then we can do the same proof as in the previous case, but with |p|+σ instead of |p|. Finally we take limit as σ → 0
and we conclude. �
Proof of Corollary 2. In Eq. (1) we consider c = 0 and the new right-hand side f̃ = f − ε|u|α+1 � f − c(x)u|u|α ,

where ε is given in the hypothesis. Then we apply Theorem 1 to this problem and get C · diam(Ω)(‖f −‖
1

1+α

Ln(Γ +(u+))
+

ε
1

1+α supΩ u) on the right-hand side. From here we see that if ε > 0 is so that C · diam(Ω)ε
1

1+α < 1, then the required
constant can be chosen. �
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