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Abstract

We prove the existence and uniqueness of solutions to Reflected Backward Doubly Stochastic Differential Equations
(RBDSDESs) with one continuous barrier and uniformly Lipschitz coefficients. The existence of a maximal and a minimal so-
lution for RBDSDEs with continuous generator is also established. To cite this article: K. Bahlali et al., C. R. Acad. Sci. Paris,
Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Equations différentielles doublement stochastiques rétrogrades réfléchies a une barriére. Nous établissons I’existence et
I’unicité des solutions pour des équations différentielles doublement stochastiques rétrogrades réfléchies (EDDSRR) avec une
barriere continue et des coefficients uniformement lipschitziens. Nous montrons également I’existence d’une solution maximale et
d’une solution minimale pour des EDDSRR ayant un générateur continu. Pour citer cet article : K. Bahlali et al., C. R. Acad. Sci.
Faris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version francaise abrégée

Les résultats essentiels de cette note sont

Théoreme 0.1. Sous les conditions (H1), (H2), (H3) et (H4), [ ’Eq. (1) admet une solution unique.
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Théoreme 0.2 (Comparaison). Soient (§, f, g, S) et (¢, ', g, S’) deux EDDSRR vérifiant les conditions (H1), (H2),
(H3) et (H4). On suppose de plus que :

() §<é& ps.
Gi) f(t,y,2) < f'(t,y,2)dP x dt p.p. ¥(y,z) € R x R,
(i) $; <S8, 0<t<T p.s.

Soit (Y, Z, K) une solution de EDDSRR (&, f,g,S) et (Y', Z', K') une solution de EDDSRR (¢', f’, g, S"). Alors

Y, <Y/, 0<t<T pus.
Théoreme 0.3. Sous les conditions (H1), (H3), (H4) et (H5), [ ’Eq. (1) admet une solution minimale et une solution
maximale.

1. Introduction

The backward doubly stochastic differential equations (BDSDE) were introduced by Pardoux and Peng in [5],
where the existence and uniqueness of solutions are established under uniformly Lipschitz coefficients. In this Note,
we study the case where the solution is forced to stay above a given stochastic process, called the obstacle. We obtain
the real valued reflected backward doubly stochastic differential equation:

T T T
Y, =§+/f(s, Ys,zs)ds+/g<s, Yy, Z,)dB, + K1 — K, —/zsdws, 0<i<T (1)
t

t 1

where the dW is a forward It6 integral and the dB is a backward It6 integral.

First, we establish the existence and uniqueness of solutions for the RBDSDE (1) in the case where the coefficients
f and g are uniformly Lipschitz in the variables y and z.

Due to the fact that the solution should be adapted to a family (F;) which is not a filtration, the usual techniques
used in the classical reflected BSDEs (see e.g. [3]) does not work. Indeed, the section theorem cannot be easily used
to derive that the solution stays above the obstacle for all time.

We give here a method which allows us to overcome this difficulty. In the Lipschitz case, the idea consists to start
from the basic RBDSDE with f and g independent from (y, z). We transform it to a RBDSDE with f =g =0,
for which we prove the existence and uniqueness of solutions by a penalization method. The section theorem is then
used in this simple context (f = g = 0) to prove that the solution, of the RBDSDE with f = g = 0, stays above the
obstacle at each time. The case where the coefficients f and g depend on (y, z) is then deduced by using a Picard type
approximation.

Second, we consider the case where the coefficient f is continuous. We then approximate f by a monotone se-
quence of Lipschitz functions (f,) and use a comparison theorem (which is established here for reflected BDSDEs)
to derive the existence of a maximal and a minimal solution are then obtained by passing to the limit.

The Note is organized as follows. In Sections 2, we give some notations, assumptions and definitions. In Section 3,
we present our main results. Section 4 is devoted to the (sketched) proofs.

2. Notations, definitions and assumptions

Let (£2, F, P) be a complete probability space and T > 0 be a fixed real number. Let {W;, 0 <t < T} and
{B;, 0 <t < T} be two independent standard Brownian motions, defined on (£2, F, P), with values in R4 and R
respectively. For 7 € [0, T], we define F; := FV v ]—'fT and G, :=FV v FE, where FV :=o(W,; 0< s <1) and
]-"ET =0 (By — By; t <s <T), completed with the P-null sets. It should be noted that (F;) is not an increasing
family of sub-o-fields, and hence it is not a filtration. However, (G;) is a filtration.

Let M% (0, T, R) denote the set of d-dimensional, jointly measurable stochastic processes {¢;; ¢ € [0, T'1}, which
satisfy:

@) E [ 1o dr < o0.
(b) ¢ is F;-measurable, for any ¢ € [0, T'].
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We denote by S% ([0, T1, R), the set of continuous stochastic processes ¢;, such that:

@) Esupog <y lgrl*dr < 0.
(b’) ¢; is F;-measurable, for any ¢ € [0, T].

Definition 2.1. A solution of Eq. (1) is a (R x R? x R.)-valued process (Y, Z;, K;)ogr<t Which satisfies Eq. (1)
and such that:

Q) (Y,Z,K) e S? x M? x LA2(2).
aGi) Y, = ;.
(iii) (K;) is continuous and increasing process with Ko = 0 and fOT(Y, —S;)dK; =0.

We consider the following assumptions:

(H1) f:2x[0,T]xRxR?—Randg: 2 x[0,T] xR x RY - R are measurable and satisfy, for every (y, z) €
RxR?, f(.,y,z) € M*(0, T,R) and g(., y, z) € M>(0, T, R).

(H2) There exist constants C > 0 and 0 < « < 1, such that for every (¢, w) € £2 x [0, T] and (y, z) € R x Rd,

{ [f(t,y,2) = f@t,y, I <C(y—yI+z—=2'],
lg(t,y,2) —g(t,y, )P <Cly =y > +alz — 7%

(H3) £ be a square integrable random variable which is Fr-measurable.

(H4) The obstacle {S;, 0 <t < T}, is a continuous F;-progressively measurable real-valued process satisfying
E(supogth(St)z) < 00. We shall always assume that St < & a.s.

(HS) (i) Fora.e. (t, w), the map (y, z) — f (¢, y, z) is continuous.
(i) There exist constants ¥ > 0, L > 0 and « € ]0, 1[, such that for every (r,w) € 2 x [0,T] and (y,z) €
R x RY,

{ |f(t,y, 2| <k (1+]y|+Iz]),
lg(t,y,2) —g(t, ¥, 2> < Lly —y)? +alz — 7%
3. The main results

Lemma 3.1. For i = 1,2, let () be square integrable and Gr-measurable random variables. Let h' : [0, T] x £2 x
R — R be such that: for every G,-adapted process satisfying E(sup,<r Y,?) < oo, the process h'(.,Y.) is G;-adapted

and satisfies E fOT (hi (s, Y5))*ds < oo.
Let (Y, Z') be a solution of the following BSDE:

Y/ =0+ [T hics, viyds — [T ZLdw,
. o
E(sup,<7 1Y/ 1> + [y 1Zi*ds) < oo.

Assume that

() h' is a uniformly Lipschitz in the variable y.
(i) r]l < 172 a.s.
(iii) h'(t, Y?) <h%(t, Y?)dP x dt a.e.

Then, Y <Y} 0<t<T,as.
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We first consider the following basic RBDSDE
Yy=¢+ [ f&)ds+Kr — Ko+ [ g(s)dBs — [] Z,dW,
Y, =5, 2
[T, = sy dk, =o0.

Proposition 3.1. Under assumptions (H1), (H3) and (H4), the basic RBDSDE (2) has a unique solution.
Theorem 3.1. Assume that (H1), (H2), (H3) and (H4) hold. Then, the RBDSDE (1) has a unique solution.

Theorem 3.2. Let (£, f,g,S) and (&', f', g, S") be two RBDSDEs. Each one satisfying all the previous assumptions
(H1), (H2), (H3) and (H4). Assume moreover that:

(1) £ <€ as.
(i) F(t,v.2) < f(t,y,2)dP x dr a.e. ¥(y, ) € R x R,
(i) S <S,0<r<Tas.

Let (Y,Z,K) [resp. (Y',Z',K")] be a solution to the RBDSDE (&, f,g,S) [resp. (§', f',g,S")]. Then, ¥; <Y,
0<t<Ta.s.

Theorem 3.3. Under the assumptions (H1), (H3), (H4) and (H5), the RBDSDE (1) has a solution (Y, Z, K) which is
a minimal one, in the sense that, if (Y*, Z*) is any other solution, then Y < Y*, P-a.s.

4. Proofs
Proof of Lemma 3.1. It follows by applying 1t6’s formula to |(Yt1 - Y,2)+|2. a

Proof of Proposition 3.1. We first prove the existence of solutions. We define
T

T T T
Y ::E—i-‘/f(s)ds—l—nv/(sx_X:l)+ds+fg(s)st—fZ?dWy
1 1 1 1

and put

Ei=&+ [) f(©)ds+ [y g(s)dBy,
Se =S+ [y f(s)ds + [y g(s)dBy,
Yr=Y"+ fé f(s)ds —|—f(§ g(s)dB;.

We then have
T T

)_’;’zé—l—n/(S‘s—)7’;)+ds—/Z§’dWS. )
t t
Let A, := EY[E v Sup, <7 Sl
By Lemma 3.1, we have
PO EGEI<V <V < A —ng[ng s]
t = Sty sty = p s |-
s<T

Using It6’s formula and passing to the expectations, we show that

T T
n|2 s _ ot 2
E [|z"ds <2E|sup(5, — &) ’ +2E [ 1yl? ds.
s<T
0 0



K. Bahlali et al. / C. R. Acad. Sci. Paris, Ser. 1 347 (2009) 1201-1206 1205

Returning to Eq. (x), we get
T

( [

0

_ _ 12
sup (S5 — )"
s<T

2
(S, —vm)* ds) <4E

Hence, there exists a nondecreasing and right continuous process K satisfying E (K %) < oo such that along a subse-
quence (which still denoted n) we have for all ¢ € L2(£2;C([0, TY)),
T T
limE/%n(Ss —v")tds = E/% dK,. 3)
! 0 0

SetY;:=sup,Y"and Y, :=Y, — fot f(s)ds — fot g(s)dBs :=sup, Y.

Let Y/ := Sy +n [ (S; —Yds — [T Zraw,.

Since St < &, then Lemma 3.1 shows that, for every t € [0, T], Y Y " a.s.

Let o be a G;-stopping time, and put t := o A T. The sequence of processes (Y") satisfies then the equality
Y = E9 [Spe(T-0 4 nf Sse 677 ds] and therefore converges to S; a.s. This implies that ¥; > S, a.s. It
follows from the section theorem ([2], p. 220) that for every t € [0, T], Y; > S; a.s.

Let N € N* and n,m > N. Using It6’s formula and the Burkholder—Davis—Gundy inequality, one can show that
there exists a positive constant C such that

T T

limsup(E< sup (¥;" — Y,m)z) + E/|Zf; - Z;"|2ds> < 2CE/(SS - YY) dK;

n,m t<T
0 0

Letting N tend to oo we obtain, since ¥ > S a.s. and K is increasing,

lim sup E(sup( — ¥y’ +E/|Z” 7" ds <2CE/(SS—YS)dKX<O.
n,m t<T o

This shows that the sequence (Y”, Z") converges suitably to a process (Y, Z). And, it is not difficult to prove that
(Y, Z, K) satisfies the RBDSDE (2) and (Y, K) is continuous. Since ¥ > §, we deduce that, fo Yy —S;)dK; > 0.On
the other hand, we have for each n, fo (Y] — S;)dK < 0. Hence, fo Y, — S,)dK, =0.

Uniqueness. Let (AY, AK, AZ) be the difference between two arbitrary solutions. Since ftT(AYS — AS;) x
d(AKj;) <0, the uniqueness follows. O

Proof of Theorem 3.1. Existence. Define the sequence (Y/', Z}', K )og/<T by Ylo =5, Z? := 0 and for every
t € [0, T] and every n € N*,

Y =g [T fes vz ds + [T g, Y2, 20 dBs + [T AR — [T zet dwy,
Yl"+1 >S5, as.,
Sl — sy dk+ =o.

Such a sequence (Y", Z", K™) exists by Proposition 3.1.
Put yn+l = ynt+l _ Y".
Applying Itd’s formula to |Y|?ef" and using the fact that flT ePsym+i(dk ! —dK") <0, we show that:

T T
—— — 1+a\” —— — )
E/(cp/';+1 >+ |Z0HP)efs ds < < > > E/(C|Y;|2 +|ZL?)efs ds.
! t
Since 1? < 1, the sequence (Y, Z") converges in M? x M?. We easily deduce that (Y"") convergence in S°. The
uniqueness can be proved by using Theorem 3.2 which is proved below. O
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Proof of Theorem 3.2. Applying Itd’s formula to |(¥; — Y/)* |2, then passing to the expectations and using the fact
that f is Lipschitz we obtain, since ¥; > S; > S; on the set {¥; > Y/},

T

E|(Y, - ¥) [P + Ef Ly,>v))
t

Z,— 7/ ds

T T
1 ,
< <3c + EC2>E/|YS — Y,y ds + (e +a)E/\zS — Z! 1y, y7) ds.
t t

Now, choose ¢ = I*T‘)‘, C=3C+ %Cz and use Gronwall’s lemma to show that Y; < Yl’, Vtas. O

Proof of Theorem 3.3. The sequence f, (¢, x) :=infyeq{f (¢, y) +n|x — y|} for every n > K, f, is uniformly n-
Lipschitz, with linear growth and ( f;,) converges suitably to f (see e.g. [1]).

We get from Theorem 3.1, that for every n € N*, there exists a unique solution {(Y/", Z}', K['), 0 <t < T} for the
following RBDSDE

Y/ =&+ [ fuls, YP, Z)ds + K — K + [T g(s, ¥, 20 dBy — [T Z"dW,, 0<1<T,
Y,” > 5, 4.1
f(rr — s dKr =o0.

Using the properties of f,, we prove that the sequence (Y”, Z", K™) converges to a process (Y, Z, K) which is
a minimal solution to the RBDSDE (1). Approximating f by sup-convolution, i.e. by the sequence f,(f,x) :=
supyeQ{f(y) — n|x — y|}, one can prove that the RBDSDE (1) has a maximal solution. O

Remark. In contrast to the classical BSDEs [4], when the barrier S is constant, the reflection process K is not
necessary absolutely continuous with respect to the Lebesgue measure. Indeed, if we take S=0,& =0, f =0 and
g =1, one can show that Z =0 and K; = (supogng B;) — (suptgng By).
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