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Abstract

We present a moment identity on the Poisson space that extends the Skorohod isometry to arbitrary powers of the Skorohod
integral. Applications of this identity are given to the invariance of Poisson measures under intensity preserving random transfor-
mations. To cite this article: N. Privault, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Identités de moments pour les intégrales de Poisson—Skorohod et applications a I’invariance en mesure. Nous présentons
une identité de moments sur I’espace de Poisson qui étend I’isométrie de Skorohod a des puissances quelconques de I’intégrale
de Skorohod, et nous étudions les applications de cette identité a I’invariance de la mesure de Poisson sous les tranformations
aléatoires qui préservent ’intensité. Pour citer cet article : N. Privault, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The classical invariance theorem for Poisson measures states that given a deterministic transformation 7: X — Y
between measure spaces (X, o) and (Y, n) sending o to u, the corresponding transformation on point processes maps
the Poisson distribution 77, with intensity o (dx) on X to the Poisson distribution 7, with intensity p(dy) on Y. In
this Note we present sufficient conditions for the invariance of random transformations 7 : 2% x X — Y of Poisson
random measures on metric spaces. Our results are inspired by the treatment of the Wiener case in [8], see [6] for
a recent simplified proof. However, the use of finite difference operators instead of derivation operators as in the
continuous case makes the proofs and arguments more complex from an algebraic point of view. Here the almost
sure isometry condition on R? assumed in the Gaussian case will be replaced by an almost sure condition on the
preservation of intensity measures and, as in the Wiener case, we will characterize probability measures via their
moments.
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In this Note the proofs of the main results are only outlined. The details of the complete proofs, which are technical,
can be found in [5].

2. Notation and preliminaries

In this section we recall some notation and facts on stochastic analysis under Poisson measures, see [3] and [7]
for recent reviews. Let X be a o-compact metric space with Borel o -algebra B(X). Let £2% denote the configuration
space on X, i.e. the space of at most countable and locally finite subsets of X, defined as

¥ ={w= )N, CX, x; #x;Vi#j, NeNU({oo}},

and endowed with the Poisson probability measure 7, with o-finite diffuse intensity o (dx) on X. Each element w
of 2% is identified to the Radon point measure w = Zf’:(f) €y;, where €, denotes the Dirac measure at x € X and
w(X) € NU {00} is the cardinality of w. Let D denote the finite difference gradient defined 7, ® o (dw, dx)-almost

everywhere as

D.F(®)=F(wU{x}) - F(»), weX xeX, (1)
for any random variable F : 2% - R, cf. [1]. We refer to [2] for the definition of the Skorohod integral operator
8 () = / u(w\ {1}, 1) (w(dr) — o (dn), @)
X

on any sufficiently integrable measurable process u: 2% x X — R. Note that if D;u; =0, t € X, 8, (u) coincides
with the compensated Poisson—Stieltjes integral of . From Corollary 1 in [4] we have the duality relation

Eo[(DF.u)12(x.0)] = Eo[F ()], F e Dom(D), u € Dom(8,). )
In addition, for any u € Dom(§,) we have the commutation relation
D;bs () =85 (Dyu) +u;, 1 e€X. “4)
3. Moment identities
Using relations (3) and (4), the next lemma provides an extension of the Skorohod isometry to moments of order
higher than 2. Here and in other formulas stated in the sequel we will simply assume that all terms are sufficiently

summable and integrable.

Lemma 1. We have

E [0 w)" ] =3 <Z>E [ f )"+ (5 (u))ko(dt)]

X
+ (Z) E[ [ ) (85 (1 + Doyu))* = (85 <u))")o<dr)},
k=1 %

foralln > 1.
Proof. This lemma is proved using the identities (3) and (4) applied to F = (85 (u))". O

Lemma 1 also shows that the moments of the compensated Poisson stochastic integral f x [ () (w(dt) —o(dt)) of
fe ﬂgﬁl LE(X) satisfy the recurrence identity

n+1
E{(/ JF®(wdn) —o(dt))) }
X

n—1

X:: (Z) /(f(t))n_k+la(dt)Ea|:(/ f(®)(w(dr) —a(dt)))k]. &)

k=0 N7 %



N. Privault / C. R. Acad. Sci. Paris, Ser. 1 347 (2009) 1071-1074 1073

In particular, in order for §, (1) to have the same moments as the compensated Poisson integral of f, it should satisfy
the recurrence relation

Eo[ (5 )" ] = f (Z) / (f )" o @ Ee[ (5, )], (©6)

k=0

n > 0, which is relation (5) for the moments of compensated Poisson stochastic integrals, and characterizes their
distribution by Carleman’s condition when sup p1 I £l L2y <oo.In order to simplify the presentation of moment
identities for the Skorohod integral §,, it will be convenient to use the symbolic notation

J
0 "ASJ'H“SP = Z D@ou.YO"'D@jMSj’ (7)
(")()Uw-U@j:{O,l,...,j}
0¢0y,...,j¢0);

where Dg :]_[je@ Ds; when ® C {0, 1,...,j}, j 20, s0,...,5; € X.
Let (Y, ) denote another measure space with associated configuration space £2¥ and Poisson measure 7, with
intensity p(dy).

Theorem 1. Let N > 0 and let R: LZ(Y) — LEY(X) be a random isometry for all p =2, ..., N + 1. Then for h €
ﬂN+1Lp(Y)andn— ..., N we have

n—1

Eo[ (8 (RI)"™] Z(’Z) / h))" ™ @) Eo [ (55 (R))']

k=0 v
n a
159) 31D DENED DERC Y
a=0j=0 b=a lo+-+la=n+1-b
lo,...slg>1
lagtsomlp=1
b j
I‘I
= ]HY Xb+1 p=0

where
q—b+ry—

of Dt —g — 1
C(109-. avabn)—( 1) (0_1) Z 1_[ 1_[ ( ll++lp_q )

O=rpt1<--<ro=a+bq=0 p=q+1—b+r44

Proof. This result is obtained by repeated applications of the integration by parts formula (3) until removal of all
terms in 8,. O

As a consequence of Theorem 1, if R: LY (Y) — L5 (X) is arandom isometry forall p =1, ..., N + 1, that satisfies
the condition

J
/ Agy - Atj ( H(Rh(tp))lp)g(dto) -0 (dtj) =0, ®)

X+l p=0
foralllp+---+[; <N+1,l>1,...,1; 21, j=1,..., N, then we have

n—1
Eo[(8, (R))"™] =k20< ) / h))" ™ w(dy) Eo [(85 (RW)'], )

n=0,..., N,ie. the moments of §, (Rh) satisfy the recurrence relation (5).



1074 N. Privault / C. R. Acad. Sci. Paris, Ser. I 347 (2009) 1071-1074

Corollary 1. Let R : LZ(Y) — L2(X) be a random isometry for all p > 1, and assume that h € ﬂ;ozl Lﬁ(Y) satisfies
SUp > | ”h”Lﬁ(Y) < 00 and the cyclic condition

Dy Rh(ty) -+ Dy Rh(t1) =0, 11,.... € X, (10)

7o ® c®-a.e., for all k > 1. Then, under s, §5(Rh) has same distribution as the compensated Poisson integral
8,.(h) of h under 7.

Proof. We first show that (10) implies (8), and then apply Theorem 1. O
4. Invariance of Poisson measures

Given a measurable random process 7 : 2% x X - Y, indexed by X, let 74 (w), w € 2%, denote the image measure
of w by 7, i.e.

1. 2% > QY (11)

maps @ = Zf’:(f) € € 2% to 1, (w) = Zf’:(f) €r(xy) € 27 In other terms, the random mapping 7, : 2% — 27 shifts
each configuration point x € w according to x > 7(w, x). We are interested in finding conditions for 7, : 2% — 27V
to map 7, to . This question is well known to have an affirmative answer when the transformation 7: X — Y is
deterministic and maps o to u.

Corollary 2. Let 7: 2% x X — Y be a measure preserving transformation mapping o to [, i.e. Ts(w, )0 = L,
w € 2%, and satisfying the cyclic condition

Dyt(w,0) - Dyt(w, 1)) =0, t,....tr € X, we 2%, (12)

forallk > 1. Then . : 2% — QY maps 75 to Ty, Le. Ty = 1y, is the Poisson measure with intensity u(dy) on Y.

Proof. We apply Corollary 1 to the isometry R: LY (Y) — L5(X), p > 1, defined by Rh =hot, h € L};(Y). Then
we note that (12) implies (10) and that we have §, (Rh) =8, (h o t) = §,,(h) o T, from (2) and the relation D; Rh(t) =
Dih(t(w, 1)) =0, 0 @ ny(dt,dw)-a.e. O

In the above corollary the identity (12) is interpreted when Y is a metric space by stating that for all
k>1and f1,...,1 € X the k-tuples (t(w U {t1}, 1), t(w U {rr},13), ..., T(w U {tr_1}, tx), T(w U {tx}, 1)) and
(t(w, ), t(w, 13), ..., T(w, 1), T(w, t1)) coincide on at least one component in Y*, for almost every w € 2%, Ex-
amples of random transformations 7 : 2% x X — Y satisfying the above hypotheses are considered in [5].
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