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Abstract

We discuss the solution by a preconditioned conjugate gradient algorithm of a Stokes problem with Robin-type boundary con-
ditions. This Stokes problem is encountered when applying an appropriate operator-splitting scheme to the time-discretization of a
system modeling the interaction of an incompressible viscous fluid with a deformable thin elastic structure. The main contribution
of this Note is the identification of a preconditioner operating in the pressure space that reduces substantially the number of itera-
tions when compared to a conjugate gradient algorithm equipped with the canonical scalar product of L2. The results of numerical
experiments show the validity of our approach. To cite this article: R. Glowinski, G. Guidoboni, C. R. Acad. Sci. Paris, Ser. I 347
(2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur la résolution d’un problème de Stokes avec conditions aux limites du type Robin par un algorithme de gradient
conjugué préconditionné. Dans cette Note on étudie la résolution d’un problème de Stokes avec conditions aux limites du type
Robin par un algorithme de gradient conjugué préconditionné. On rencontre ce type de problèmes lorsque l’on applique certains
schémas de discrétisation en temps par décomposition d’opérateurs à la résolution numérique du système d’équations aux deri-
vées partielles modélisant l’interaction d’un fluide visqueux incompressible avec une structure élastique mince. La contribution
principale de cette Note est l’identification d’un opérateur de préconditionnement agissant dans l’espace des pressions (en l’occur-
rence L2(Ω)) ; cet opérateur réduit considérablement le nombre d’itérations nécesssaires à la convergence, lorsque l’on compare à
l’algorithme de gradient conjugué opérant dans L2(Ω) muni de son produit scalaire canonique. Les résultats d’essais numériques
confirment la validité de notre approche. Pour citer cet article : R. Glowinski, G. Guidoboni, C. R. Acad. Sci. Paris, Ser. I 347
(2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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Fig. 1. Visualization of the flow region.

Fig. 1. Visualisation du domaine d’écoulement.

1. Formulation of the problem

Let Ω be a bounded domain of R
d filled with an incompressible viscous fluid of density �f and viscosity μ.

For simplicity, in this Note we will consider only two-dimensional flows; the generalization of the method to three-
dimensional situations is under investigation. We assume then that Ω ⊂ R

2 and that its boundary ∂Ω verifies ∂Ω =
Σb ∪Σ0 ∪ΣL ∪Γ (see Fig. 1). We assume that there exists a smooth function η = η(x1) such that the upper boundary
Γ can be written as follows

Γ = {{x1, x2} ∈ R
2: x1 ∈ (0,L), x2 = H + η(x1)

}
. (1)

We prescribe the normal stress on Σ0 and ΣL, we assume symmetry with respect to the x1-axis on Σb , and we
assume that the top boundary Γ behaves like an elastic string. Such problem arises in many applications, including
the modeling of blood flow in arteries (see e.g. [2–4,10]).

After an appropriate time-discretization by operator splitting which decouples the parabolic part of the problem
(fluid viscosity) from the hyperbolic part (advection and elasticity) [8,9], one encounters at each time step a time-
dependent Stokes problem of the following type:

�f ∂tu − ∇ · σ = 0, ∇ · u = 0, in Ω × (0, T ) (2)

with the initial condition u(0) = u0, and the following boundary conditions:

∂x2u1 = 0 and u2 = 0 on Σb × (0, T ), (3)

σn = −p̄n on Σ0 × (0, T ), σn = 0 on ΣL × (0, T ), (4)

u1 = 0 and �shs∂tu2 +
√

1 + (∂x1η)2σn · e2 = 0 on Γ × (0, T ), (5)

where p̄, �s and hs are positive constants, and e2 = (0,1). Here u = {u1, u2} is the fluid velocity, p is the fluid
pressure, and σ is the fluid stress tensor defined as σ = −pI + 2μD(u), with D(u) = (∇u + (∇u)T )/2. A variational
formulation of problem (2)–(5) is: For t ∈ (0, T ), find u(t) ∈ V and p(t) ∈ L2(Ω) such that:

�f

∫

Ω

∂tu · v dx + �shs

L∫

0

∂t (u2|Γ )v2|Γ dx1 + 2μ

∫

Ω

D(u) : D(v)dx =
∫

Ω

p∇ · v dx +
H∫

0

p̄v1 dx2,

∫

Ω

q∇ · u = 0, ∀v ∈ V and ∀q ∈ L2(Ω), with u(0) = u0, (6)

where V = {v ∈ (H 1(Ω))2: v2|Σb
= 0, v1|Γ = 0}. Let us discretize problem (6) by the backward Euler scheme. Then,

with obvious notation, at each time step we have to solve: Find un ∈ V and pn ∈ L2(Ω) such that:

α

∫
un · v dx + β

L∫
un

2|Γ v2|Γ dx1 + 2μ

∫
D

(
un

) : D(v)dx =
∫

pn∇ · v dx + Ln(v), ∀v ∈ V,
Ω 0 Ω Ω
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∫

Ω

q∇ · un = 0, ∀q ∈ L2(Ω), (7)

where α = �f /
t , β = �shs/
t , and Ln(v) = α
∫
Ω

un−1 · v dx + β
∫ L

0 un−1
2 |Γ v2|Γ dx1 + ∫

Σ0
p̄v1 dx2.

2. An equivalent pressure formulation of problem (7)

Let us define the following linear operator from L2(Ω) into L2(Ω)

Aq = ∇ · uq ∀q ∈ L2(Ω), (8)

where uq is the unique solution of the following linear variational problem:

uq ∈ V ; α

∫

Ω

uq · v dx + β

L∫

0

uq2|Γ v2|Γ dx1 + 2μ

∫

Ω

D(uq) : D(v)dx =
∫

Ω

q∇ · v dx, ∀v ∈ V.

Following [6] Section 19.3, it can be shown that A is a strongly elliptic, symmetric automorphism of L2(Ω). Thanks
to these properties of operator A, problem (7) can be solved using a conjugate gradient method operating in L2(Ω).
Numerical experiments show that if the conjugate gradient method uses the classical scalar product in L2(Ω), then
the rate of convergence is pretty slow if α � μ. Unfortunately, this is the case for the application that motivates the
present analysis, namely the modeling of blood flow in large arteries (see e.g. [2,3]). In order to improve the speed of
convergence of the conjugate gradient algorithm, there is need for preconditioning ( see [6] Chapter IV, Section 21.3).
Preconditioning operators are available for the case of Dirichlet and/or stress related boundary conditions, but not for
the boundary conditions in (5). This is the novelty introduced by the elasticity of Γ .

In order to avoid the deterioration of the convergence properties, associated with large values of the ratio α/μ, we
will employ as scalar product on L2(Ω) the one advocated in [5], namely

{q, q ′} →
∫

Ω

(
B−1q

)
q ′ dx ∀q, q ′ ∈ L2(Ω), (9)

where the operator B−1 is defined via its inverse B = α(−
)−1 + μI ; here I is the identity operator, and the Green
operator (−
)−1 is associated with the boundary conditions (3)–(5) and it will be defined in the next section (see
Eq. (17)). We remark that it is not necessary to know the operator B−1 explicitly, but it is sufficient to know its
inverse B , see [6].

In order to identify the optimal preconditioning operator for the case at hand, we are going to consider a one
dimensional situation where B can be computed explicitly.

3. A one dimensional case

Let us consider the bounded and open interval (0, l). By analogy with the multi-dimensional case presented in
Section 2, we define the operator A from L2(0, l) into L2(0, l) as Aq = u′

q , where uq is the solution of the following
problem

αuq − μu′′
q = −q ′ in (0, l), uq(0) = 0, βuq(l) + μu′

q(l) = q(l). (10)

Consider now the operator B defined by Bq = αϕq + μq where ϕq is the solution of:

−ϕ′′
q = q in (0, l), ϕ′

q(0) = 0, ϕq(l) + aϕ′
q(l) = 0. (11)

Theorem 3.1. If a = β/α, then B−1 = A.

Proof. We need to show that B(Aq) = Bu′
q = q . By definition, Bu′

q = αϕq + μu′
q where ϕq solves

−ϕ′′
q = u′

q in (0, l), ϕ′
q(0) = 0, ϕq(l) + aϕ′

q(l) = 0. (12)
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Therefore we have to show that αϕq + μu′
q = q . Integrating (12) from 0 to x and using the boundary conditions at

x = 0 we obtain that

−ϕ′
q(x) = uq(x), (13)

which also holds at x = l. Now, combining (10) and (13) we get

−αϕ′
q − μu′′

q = −q ′. (14)

Integrating (14) from x to l, using (10), (11), and the fact that −ϕ′
q(l) = uq(l) we get:

aαϕ′
q(l) − βϕ′

q(l) + αϕq(x) + μu′
q(x) = q(x). (15)

This implies that if a = β/α then αϕq + μu′
q = q , and this completes the proof. �

4. A preconditioned conjugate gradient algorithm

Motivated by Theorem 3.1, we advocate the use of the following scalar product in L2(Ω):

{q, q ′} →
∫

Ω

(
B−1q

)
q ′ dx (16)

with B defined as Bq = αϕq + μq , where ϕq solves the following problem:

−∇2ϕq = q in Ω, ϕq = 0 on Σ0 ∪ ΣL, ∂ϕq/∂n = 0 on Σb, ϕq + a ∂ϕq/∂n = 0 on Γ. (17)

Finally, the preconditioned conjugate gradient algorithm to solve problem (7) reads as follows:

Take an initial guess p0 ∈ L2(Ω) and then find u0 ∈ V such that

α

∫

Ω

u0 · v dx + β

L∫

0

u0
2|Γ v2|Γ dx1 + 2μ

∫

Ω

D
(
u0) : D(v)dx =

∫

Ω

p0∇ · v dx + L(v) ∀v ∈ V, (18)

and set r0 = ∇ · u0. Solve now

−∇2ϕ0 = r0 in Ω, ϕ0 = 0 on Σ0 ∪ ΣL, ∂ϕ0/∂n = 0 on Σb, ϕ0 + a ∂ϕ0/∂n = 0 on Γ. (19)

Then set g0 = μr0 + αϕ0 and w0 = g0.
For k � 0, assuming that pk , rk , gk , wk are known, compute pk+1, rk+1, gk+1, wk+1 as follows.
Find ūk ∈ V such that

α

∫

Ω

ūk · v dx + β

L∫

0

ūk
2|Γ v2|Γ dx1 + 2μ

∫

Ω

D
(
ūk

) : D(v)dx =
∫

Ω

wk∇ · v dx ∀v ∈ V, (20)

and set r̄k = ∇ · ūk . Compute

�k =
∫

Ω

rkgk dx
/∫

Ω

r̄kwk dx, (21)

and then pk+1 = pk − �kw
k and rk+1 = rk − �kr̄

k . Solve, next,

−∇2ϕ̄k = r̄k in Ω, ϕ̄k = 0 on Σ0 ∪ ΣL, ∂ϕ̄k/∂n = 0 on Σb, ϕ̄k + a ∂ϕ̄k/∂n = 0 on Γ. (22)

Then compute gk+1 = gk − �k(μr̄k + αϕ̄k). If∫

Ω

rk+1gk+1 dx
/∫

Ω

r0g0 dx � ε, (23)

take p = pk+1; else, compute γk = ∫
Ω

rk+1gk+1 dx/
∫
Ω

rkgk dx, and update wk by wk+1 = gk+1 + γkw
k .

Do k = k + 1 and return to (20).
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Fig. 2. Convergence of the conjugate gradient algorithm for Case 1, Case 2 and Case 3 with preconditioning (curves 1P, 2P and 3P) and without
preconditioning (curves 1, 2, 3).

Fig. 2. Convergence de l’algorithme de gradient conjugué dans les Cas 1, 2 et 3 avec préconditionnement (courbes 1P, 2P et 3P) et sans précondi-
tionnement (courbes 1, 2 et 3).

The main novelty of the scheme (18)–(23) consists in the new type of boundary conditions for the auxiliary function
ϕ on the elastic portion of the boundary. From the classical theory of preconditioned conjugate gradient methods for
incompressible viscous fluids (see [6] and the references therein), it is well known that where Dirichlet conditions for
the normal component of the velocity are imposed, then one imposes ∂ϕ/∂n = 0 for the auxiliary elliptic problem
for the function ϕ. On the other hand, where a condition on the fluid stress is imposed, then one imposes ϕ = 0.
For the boundary conditions of the problem at hand, we need to impose a Robin boundary condition on ϕ, see (19)
and (22). The optimal value of the constant a in the Robin condition for ϕ is tightly related to the parameters α and
β of problem (7). The optimality of this constant has been proved in Theorem 3.1 only for a simple one-dimensional
problem, but our numerical experiments show the same trend in the multi-dimensional case.

5. Numerical results

To solve problem (18)–(23), we use an isoparametric version [6] of the Bercovier–Pironneau finite elements
spaces [1]. This approximation, known as the P 1-iso-P 2 and P 1 approximation, requires the use of two different
meshes: a coarse mesh for the pressure (mesh size hp) and a finer mesh for the velocity (mesh size hv = hp/2).
Problems (18) and (20) are solved on the fine mesh, while problems (19) and (22) are solve on the coarse mesh. This
significantly reduces the computational costs of the algorithm.

The numerical results presented in this section have been obtained for H = 0.5, L = 6, η = 0, u0 = 0, p0 = 0,
hp = H/8, and ε = 10−13. We have considered three different cases:

– Case 1: α = 1 × 103, μ = 1.0, β = 1 × 102;
– Case 2: α = 1 × 103, μ = 1.0, β = 1 × 104;
– Case 3: α = 1 × 103, μ = 0.035, β = 1.1 × 102.

We remark that the parameter values encountered in blood flow modeling correspond to Case 3. In Fig. 2 we compare
the performance of the preconditioned conjugate gradient algorithm with respect to its classical version (with the
scalar product in L2). In all the three cases presented here, the preconditioning significantly reduces the number of
iterations needed for convergence. In Fig. 3 we show how the value of constant a in the Robin condition for ϕ (see
(12), (19) and (22)) affects the speed of convergence of the preconditioned conjugate gradient scheme. The results in
Fig. 3 correspond to Case 1, and they show that the optimal value for the constant a is around 0.1. This is in very
satisfactory agreement with the optimal value predicted by Theorem 3.1, namely a = β/α = 0.1. The results shown
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Fig. 3. Influence on the number of iterations of the constant a in the Robin condition verified by ϕ.

Fig. 3. Influence sur le nombre d’itérations de la constante a dans la condition de Robin vérifiée par ϕ.

in this Note are obtained for η = 0, but the case of η = η(x1) does not present any additional difficulty. Our approach
can easily handle flows in domains with curved boundaries [8], even at high Reynolds numbers, see [7].
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