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Abstract

In this Note, we consider the Lane–Emden problem −�u = λ2|u|p−2u with Dirichlet boundary conditions, where the domain Ω

is an open bounded subset of R
2, λ2 is the second eigenvalue of −�, and p > 2. We prove that, if Ω is �2 and convex, the nodal

line intersects ∂Ω when p is close to 2. In contrast, we also exhibit a connected — but not simply connected — domain Ω such
that, for p close to 2, the nodal line does not intersect ∂Ω . To cite this article: C. Grumiau, C. Troestler, C. R. Acad. Sci. Paris,
Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Structure de la ligne nodale des solutions nodales d’énergie minimale pour le problème de Lane–Emden. Soit l’équation
−�u = λ2|u|p−2u avec conditions au bord de Dirichlet, où Ω ⊆ R

2 est ouvert borné, λ2 la deuxième valeur propre de −� et
p > 2. Nous prouvons que, sur un convexe de classe �2, la ligne nodale de toute solution nodale d’énergie minimale intersecte
∂Ω pour p proche de 2. Par ailleurs, nous montrons également l’existence d’un ensemble connexe mais non simplement connexe,
tel que, pour p proche de 2, la ligne nodale de toute solution nodale d’énergie minimale n’intersecte pas ∂Ω . Pour citer cet
article : C. Grumiau, C. Troestler, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Dans [5] et [9], les auteurs ont obtenu que, pour p proche de 2, les solutions nodales d’énergie minimale de
l’équation −�u = λ2|u|p−2u, avec conditions au bord de Dirichlet sur un domaine ouvert et borné Ω , ont les mêmes
symétries que leur projection sur le deuxième espace propre de −�. Ceci implique en particulier que leur ligne nodale
est un diamètre pour les disques et les anneaux, une médiane pour les rectangles, . . . Nous étendons ici le fait que
la ligne nodale des solutions nodales d’énergie minimale touche le bord pour des domaines convexes sans besoin de
symétrie. De plus nous montrons que l’hypothèse de convexité ne peut être enlevée.
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Les ingrédients sont les suivants. Premièrement, dans le cas linéaire −�u = λ2u, il est connu [2,12] que la ligne
nodale d’une seconde fonction propre de −� intersecte ∂Ω en deux points si Ω est convexe. On sait également [10]
qu’il existe un domaine connexe (mais non simplement connexe) Ω tel que λ2 est simple et la ligne nodale de la
deuxième fonction propre n’intersecte pas ∂Ω . Ensuite, nous prouvons que, quand Ω est de classe �2 et p → 2, les
points d’accumulation faibles (pour la norme H 1

0 ) u2 d’une famille (up)p>2 de solutions nodales d’énergie minimale
sont aussi des points d’accumulation forts pour la norme �1. Nous en déduisons que si la ligne nodale de u2 intersecte
(resp. n’intersecte pas) ∂Ω , la ligne nodale de up en fait de même pour p suffisamment proche de 2. Remarquons que
la ligne nodale étant de mesure nulle, une convergence H 1

0 (et donc presque partout) n’est pas suffisante pour obtenir
ces résultats.

1. Introduction

We consider the super-linear elliptic boundary value problem

{−�u = λ2|u|p−2u, in Ω,

u = 0, on ∂Ω,
(�p)

where Ω ⊆ R
2 is an open bounded domain and p > 2. We write λi = λi(Ω) for the ith distinct eigenvalue of −�,

and Ei for the ith eigenspace. The usual norm in H 1
0 (Ω) is denoted ‖ · ‖ and the norm in Lp(Ω) is ‖ · ‖Lp . Let B(v, r)

be the open ball {u ∈ H 1
0 (Ω) | ‖u−v‖ < r} and B[v, r] the closed ball. The symbol � denotes a compact embedding.

It is well known that, for p > 2, problem (�p) has a positive ground state solution [3]. B. Gidas, W.N. Ni and
L. Nirenberg [8] showed, using the elegant and now celebrated moving planes technique, that, on a convex domain,
the ground state inherits the symmetries of the domain.

A. Castro, J. Cossio and J.M. Neuberger [7] proved the existence of a nodal solution with least energy among
nodal solutions, which is therefore referred to as a least energy nodal solution of problem (�p). This solution has two
nodal domains, just as the second eigenfunctions of −�. Whereas ground state solutions inherit the symmetries of the
domain, A. Aftalion and F. Pacella [1] proved in 2004 that, on a ball, a least energy nodal solution cannot be radial
and the nodal line always intersects the boundary of the domain. On the other hand, in 2005, T. Bartsch, T. Weth and
M. Willem [4] obtained partial symmetry results: they showed that, on a radial domain, a least energy nodal solutions
u have the so-called Schwarz foliated symmetry, i.e. u can be written as u(x) = ũ(|x|, ξ · x), where ξ ∈ R

2 and ũ(r, ·)
is nondecreasing for every r > 0. It does not directly imply that the nodal line is a diameter let alone intersects the
boundary. In 2007, F. Pacella and T. Weth [14] proved that, on a radial domain, solutions with Morse index less than 2
respect the Schwarz foliated symmetry and their nodal line intersects ∂Ω .

In this Note, we establish that for a convex domain Ω ⊆ R
2 not necessarily possessing any symmetry, the zero

set of least energy nodal solutions intersects ∂Ω . Our proofs are inspired from a recent work in collaboration with
D. Bonheure, V. Bouchez and J. Van Schaftingen [5,9], where we proved that, for p close to 2, least energy nodal
solutions possess the symmetries of their projection in the second eigenspace E2. In the same vein, we establish that
a family (up)p>2 of least energy nodal solutions of (�p) converges, in a suitable sense, to some u2 ∈ E2 and so that
the zero set of up is close to the zero set of u2. We then conclude using a result by G. Alessandrini [2] (see also [12])
saying that the nodal line of the non-zero second eigenfunctions of −� intersects ∂Ω at exactly two points when
Ω ⊆ R

2 is convex. Using a theorem by M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and N. Nadirashvili [10], we
also show that, if the convexity assumption is removed, the zero set may well not touch ∂Ω anymore. It is a conjecture
that, on a simply connected domain, the nodal line always intersects ∂Ω . However, at this time, this is not even proven
to be true for the linear case.

The Note is organised as follows: As the family of least energy nodal solutions (up)p>2 is bounded (see [5]),
without loss of generality, we can assume that up ⇀ u2 ∈ E2, up to a subsequence. In Section 2, we prove that, when
Ω is of class �2 and p → 2, weak accumulation points of the family (up)p>2 in the H 1

0 -norm are strong accumulation
points in E2 for the �1-norm. Section 3 then uses this result to establish that the nodal line of up intersects (resp. does
not intersect) the boundary of Ω when the nodal line of u2 does (resp. does not).
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2. Convergence in �1�1�1

Let (up)p>2 be a family of least energy nodal solutions of (�p). D. Bonheure et al. [5] proved that (up)p>2 is
bounded in H 1

0 (Ω), stays away from zero, and that weak accumulation points for the H 1
0 -norm are in fact strong

accumulation points and lie in E2. Here we show that they also are accumulation points for �1-norm.

Lemma 1. For any sequence (pn) ⊆ ]2,+∞[, if pn → 2 and upn ⇀ u2 in H 1
0 , then |upn |pn−2upn → u2 in Lq , for all

q > 1.

Proof. Let q > 1, p̄ := supn∈N pn and r := q(α − 1) > 1. Given the result recalled before [5] and the Sobolev
embedding theorem, one can assume upn → u2 in Lr , for all r > 1. Thus, taking if necessary a subsequence, there
exists g ∈ Lr such that, almost everywhere, |upn − u2| � g (see e.g. [15, Proposition 14.9]). As u2 ∈ �(Ω̄), there
exists a constant K such that, a.e., |upn | � g + K . Therefore, for all n ∈ N,∣∣|upn |pn−2upn − u2

∣∣ � max(1, g + K)p̄−1 + K ∈ Lr/(p̄−1)

and so |upn |pn−1upn − u2 ∈ Lq . Using Lebesgue’s dominated convergence theorem and the fact that the limit does
not depend on the subsequence, we can conclude. �
Proposition 2. If Ω is of class �2 and u2 ∈ E2 is a weak accumulation point of (up) in H 1

0 , u2 is a accumulation
point in �1(Ω̄).

Proof. By hypothesis, there exists a sequence 2 < pn → 2 such that upn ⇀ u2 in H 1
0 . We have, for all n ∈ N,

{−�(upn − u2) = λ2
(|upn |pn−2upn − u2

)
, in Ω,

upn − u2 = 0, on ∂Ω.

By Lemma 1, |upn |pn−2upn → u2 in Lq , for all q > 1. Elliptic regularity estimates [6] imply that, for pn sufficiently
close to 2, upn ∈ W 2,q and upn → u2 in W 2,q . Recall that Wk,q(Ω) � �m,α(Ω̄) when m < k − 2/q and 0 � α <

�k − 2
q

− m�. Thus, taking q sufficiently large so that W 2,q � �1, we conclude that upn → u2 in �1. �
Remark 3. The above two results hold in dimensions N < 2∗ (i.e., N = 2 or 3).

3. Nodal line structure

3.1. General asymptotic results

In this section, we call the ε-neighbourhood of a set A the set of points x ∈ Ω such that the distance between x and
A is less than ε. For any u ∈ �0(Ω) with two nodal domains, let �(u) := {x ∈ Ω | u = 0} denote its nodal set, ND+

u

its positive nodal domain, and ND−
u its negative nodal domain.

Proposition 4. Let Ω be a domain of class �2 and u2 ∈ E2 be such that ND+
u2

\ �(u2) and ND−
u2

\ �(u2) intersect

the same connected component of ∂Ω . If upn ⇀ u2 in H 1
0 , then, for pn close to 2, �(upn) intersects ∂Ω .

Proof. By contradiction, let us assume that there exists a subsequence, still denoted pn, such that pn → 2 and the
nodal sets of upn do not intersect ∂Ω . Let Γ be a connected component of ∂Ω that both ND+

u2
\ �(u2) and ND−

u2
\

�(u2) intersect. Since �(upn) stays away from Γ , upn has always the same sign in a neighbourhood of Γ . Going
if necessary to a subsequence, we can assume that upn > 0 in a neighbourhood of Γ for all n (the case upn < 0 can
be treated similarly). Hopf’s lemma implies ∂upn/∂ν < 0 for all x ∈ Γ , where ∂/∂ν is the derivative in the outer

normal direction. Pick x ∈ Γ ∩ (ND−
u2

\ �(u2)). Since �(u2) is compact, there exist a connected neighbourhood U

of x such that u2 < 0 in U ∩ Ω . Thus, by Hopf’s lemma, ∂u2/∂ν > 0. As upn → u2 in �1(Ω̄) by Proposition 2, this
is a contradiction. �
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Fig. 1. Level curves of u2. The nodal line is in bold. Fig. 2. Level curves of u3. The nodal line is in bold.

Proposition 5. Let Ω be an open bounded domain of class �2. If up → u2 and the nodal line of u2 does not inter-
sect ∂Ω , then, for p close to 2, the nodal line of up does neither intersect ∂Ω .

Proof. As �(u2) does not intersect ∂Ω which is compact, there exists ε > 0 such that u2 does not vanish in an
ε-neighbourhood of ∂Ω . Thus Hopf’s lemma and the compactness of ∂Ω imply the existence of a constant c > 0
such that |∂u2(x)/∂ν| � c for all x ∈ ∂Ω . Using the fact that up → u2 in �1 (Proposition 2), we conclude that, for p

sufficiently close to 2, |∂up/∂ν| � c/2 on ∂Ω and therefore up does not vanish in a neighbourhood of ∂Ω . �
Remark 6. The boundary of a simply connected domain of R

2 has a unique connected component [11]. Note also
that, thanks to Remark 3, Propositions 4 and 5 are also valid in dimension N = 3.

3.2. The convex case

In 1994, G. Alessandrini [2] showed that, when Ω is convex, the nodal line of the second eigenfunctions of −�

always intersects ∂Ω at exactly 2 points. Using this and Proposition 4, we immediately obtain:

Theorem 7. On a convex domain of class �2, for p sufficiently close to 2, the nodal line of least energy nodal solutions
up intersects the boundary of Ω .

3.3. The non-simply connected case

In 1995, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and N. Nadirashvili [10] exhibited a connected (but not
simply connected) domain Ω such that the second eigenvalue of � is simple and the nodal line of a second eigen-
function does not intersect ∂Ω . To describe it, let us work in polar coordinates x = r(cosω, sinω) with 0 � ω < 2π

and select 0 < R1 < R2 < R3 such that λ1(B(0,R1)) < λ1(A(R2,R3)) < λ2(B(0,R1)), where A(R2,R3) denotes the
annulus B(0,R3) \ B[0,R2]. Then consider

Db,ε := B(0,R1) ∪ A(R2,R3) ∪
b−1⋃
j=0

{
x ∈ R

2: R1 � r � R2,

∣∣∣∣ω − 2πj

b

∣∣∣∣mod 2π < ε

}
,

which is a disc surrounded by an annulus joined by b small bridges. For b sufficiently large and ε sufficiently small,
M. Hoffmann-Ostenhof et al. show that the nodal line of u2 does not intersect ∂Db,ε . Since their proof does not use the
structure of the bridges between B(0,R1) and A(R2,R3) but only the group of reflections that leaves Db,ε invariant
and the fact that the bridges are small, we can smooth the domain so that it is of class �2. By Proposition 5, we then
conclude:

Theorem 8. There exists connected domain such that, for p close to 2, the nodal sets of the least energy nodal solutions
do not intersect the boundary of Ω .

Fig. 1 shows the level curves of a second eigenfunction of −� for b = 6 bridges. You can see that the nodal line is
included into the ball B(0,R1) and that the second eigenfunction u2 is even with respect to any reflection leaving Ω
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invariant [10, Lemma 1]. Therefore, by [5], up is even with respect to any reflection that leaves Ω invariant, for p

close to 2.
Numerical experiments seem to indicate that Theorem 8 and the above symmetry properties of up do not remain

valid for values of p farther from 2. For example, Fig. 2 represents levels curves of up for p = 3 computed using the so
called “modified mountain pass algorithm” proposed by J.M. Neuberger [13]. It clearly shows that �(u3) touches ∂Ω

and that u3 is only even with respect to a single reflection.
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