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Abstract

In this Note, we give a uniform bound and a non-existence result for positive solutions to the Lichnerowicz equation in Rn. In
particular, we show that positive smooth solutions to:

�u + f (u) = 0, u > 0, in Rn

where

f (u) = u−p−1 − up−1,

are uniformly bounded. To cite this article: L. Ma, X. Xu, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Une estimation uniforme et un résultat de non-existence pour l’équation de Lichnerowicz sur n-espace. Dans cette Note,
nous donnons une estimation uniforme et un résultat de non-existence pour les solutions positives de l’équation de Lichnerowicz
sur Rn. En particulier, nous montrons que les solutions positives régulières de :

�u + f (u) = 0, u > 0, dans Rn

où

f (u) = u−p−1 − up−1,

sont bornées. Pour citer cet article : L. Ma, X. Xu, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

In the Einstein-scalar field theory one has the Lichnerowicz equation on a Riemannian manifold (M,γ ) of dimen-
sion n � 3 (see [2,3,6]). The aim of this paper is to give some results for positive solutions to this equation in the
whole Euclidean space.

Given a smooth symmetric 2-tensor σ , a smooth vector field W , and a triple data (π, τ,ϕ) of smooth functions
on M . Set

cn = n − 2

4(n − 1)
, p = 2n

n − 2
,

and let

Rγ,ϕ = cn

(
R(γ ) − |∇ϕ|2γ

)
, Aγ,W,π = cn

(|σ + DW |2γ + π2)
and

Bτ,ϕ = cn

(
n − 1

n
τ 2 − V (ϕ)

)
where V : R → R is a given smooth function and R(γ ) is the scalar curvature function of γ . Then the Lichnerowicz
equation for the Einstein-scalar conformal data (γ, σ,π, τ,ϕ) with the given vector field W is

�γ u − Rγ,ϕu + Aγ,W,πu−p−1 − Bτ,ϕup−1 = 0, u > 0, (1)

where �γ is the Laplacian operator of γ . We use the convention that �γ u = u′′ on the real line R. Note that Aγ,W,π �
0. This equation is closely related to the Yamabe problem and the prescribing scalar curvature problems (see [1,7,8]).

We shall consider a special case when (M,γ ) = Rn is the standard Euclidean space with radial symmetry data
(σ,π, τ,ϕ). In this case, we can simply rewrite the equation in the following form

�u + R(x)u + A(x)u−p−1 + B(x)up−1 = 0, u > 0, on Rn (2)

where R(x) � 0, A(x) � 0, and B(x) are given smooth functions of x ∈ Rn.

Theorem 1. Suppose that A := A(x) � 0, B := B(x) � 0, and R(x) � 0. Let β = p+1
2p

. Assume that

+∞∫
0

dr

(
r1−n

∫
Br (0)

A1−βBβ dx

)
= +∞. (3)

Then there exists no positive solution to (2).

Note that β = 3n−2
4n

, so the condition (3) can be written as

+∞∫
0

dr

(
r1−n

∫
Br (0)

A(x)
n+2
4n B(x)

3n−2
4n dx

)
= +∞.

As a particular example, we note that when A1−βBβ � C > 0 for some positive constant C > 0, there exists no
positive solution to (2).

This result may be extended to other case (see Theorem 3 in next section).
We also have the following uniform bound for any positive solution to (2).

Proposition 2. Assume that R(x) = 0 and A(x) = 1 is a positive constant and B(x) = −B is a negative constant
in (2). Then any positive solution to (2) is uniformly bounded.

In a recent paper, O. Druet and E. Hebey [4] have proved a very interesting result which says that for Lichnerowicz
equation on a compact Riemannian manifold, the stability holds true when the dimension n is such that n � 5 and
fails to hold in general when n � 6.
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2. Non-existence results

In this section we prove Theorem 1.
Recall our assumption that B(x) � 0 and R(r) � 0. We remark that for each fixed x ∈ Rn,

A(x)X−p−1 + B(x)Xp−1

is a convex function in X.

Proof of Theorem 1. Let ū := ū(r) be the average of u(x) on the sphere Sn−1
r (0) of radius r .

Note that taking this average operation and using Jensen’s inequality to Eq. (2) we have

−ū′′ − n − 1

r
ū′ � R(x)u + A(x)u−p−1 + B(x)up−1. (4)

Using the Holder inequality to the right side of (4), we have

A(x)u−p−1 + B(x)up−1 � A1−βBβ

where

β = p + 1

2p
.

Then we have

−(
rn−1ū′)′ � rn−1(R(x)u + A1−βBβ

)
,

which implies that

−rn−1ū′ �
∫

Br (0)

A1−βBβ dx +
∫

Br(0)

Ru

after an integration. Dividing both side by rn−1 and integrating this inequality over [0, r0] , we have

ū(0) − ū(r0) �
r0∫

0

dr

(
r1−n

∫
Br(0)

A1−βBβ dx

)
+

r0∫
0

r1−n

∫
Br(0)

Ru.

Sending r0 → ∞ we have

ū(0) �
∞∫

0

dr

(
r1−n

r∫
0

τn−1A1−βBβ dτ

)
,

which is impossible by our assumption that

+∞∫
0

dr

(
r1−n

∫
Br (0)

A1−βBβ dx

)
= +∞.

Then the proof of Theorem 1 is complete.
We remark that from our proof above, we use the interaction between A and B . If we use the interaction between

R and A, we can have the following result by the same argument.

Theorem 3. Suppose that A := A(x) � 0, B(x) � 0, and R := R(x) � 0. Let β = p+1
2p

. Assume that

+∞∫
0

dr

(
r1−n

∫
Br (0)

A(x)
n−2

4(n−1) R(x)
3n−2

4(n−1) dx

)
= +∞.

Then there exists no positive solution to (2).
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3. Proof of Proposition 2

In this section, we assume that R(r) = 0 and A(r) = 1 is a positive constant and B(r) = −B is a negative constant
in (2). Then we may reduce (2) into the following form:

�u + f (u) = 0, u > 0, on Rn (5)

where

f (u) = u−p−1 − Bup−1.

Denote by BR any ball of radius R > 0 in Rn.
We shall use a trick used in [5]. We look for a positive radial super-solution v = v(r) to (5) in the ball BR with the

positive infinity boundary condition. This is equivalent to finding v = v(r) > 0 such that{
�v + f (v) � 0, in BR,

v = +∞, on ∂BR.

Note that

f ′ = −(p + 1)u−p − B(p − 1)up−2 < 0

for u > 0. Then the comparison lemma is true for (5) in the ball BR . Hence, we have

u(x) � v(r), in BR.

From this we know that u is uniformly bounded in Rn.
Let v(r) = (R2 − r2)−α for large α > 1 and small R � 1. By direct computation, we know that v is the right

super-solution v = v(r) to (5) in the ball BR with positive infinity boundary condition. Hence

u(x) � 2αR−2α, in BR/2.

This proves our Proposition 2.
It is clear that our argument can be generalized to treat positive solutions to the following equation:

�u + A(x)u−p−1 − Bup−1 = 0, in Rn,

where A(x) is a smooth uniformly bounded function in Rn. It is an open question if the Liouville type theorem is true
for positive solutions to (5).
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