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Abstract

We propose a cell-centered symmetric scheme which combines the advantages of MPFA (multipoint flux approximation)
schemes such as the L or the O scheme and of hybrid schemes: it may be used on general non-conforming meshes, it yields a
9-point stencil on two-dimensional quadrangular meshes, it takes into account the heterogeneous diffusion matrix, it is coercive
and it can be shown to converge. The scheme relies on the use of special points, called harmonic averaging points, located at the
interfaces of heterogeneity. To cite this article: L. Agelas et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Un schéma a neuf points pour la diffusion en milieu hétérogene. Nous proposons un schéma ayant ses inconnues aux centres
des mailles, combinant les avantages des schémas a flux multi-points et des schémas hybrides : il possede un stencil a 9 points en
2D, respecte les hétérogénéités de la matrice de diffusion, et il est coercif ; de plus, on peut montrer qu’il converge. Le schéma est
basé sur I’ utilisation de points situé aux interfaces d’hétérogénéité, en lesquels la formule de la moyenne harmonique est utilisable.
Pour citer cet article : L. Agelas et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The aim of this Note is to provide an approximation of the unique weak solution to the diffusion problem
—div(A(x)Vu) = f in 2 with boundary condition ¥ = 0 on 952, where we denote by 952 = £2 \ §2 the bound-
ary of the domain £2. Hence we wish to find an approximation of the solution to the problem:

find u € Hy (£2) such that Vv € Hy (£2), /A(x)Vu(x) -Vu(x)dx = / F(x)v(x)dx. (1)
2 2

* Work supported by Groupement de Recherche MOMAS, PACEN/CNRS.
E-mail addresses: leo.agelas @ifp.fr (L. Agelas), robert.eymard @univ-paris-est.fr (R. Eymard), raphaele.herbin @cmi.univ-mrs.fr (R. Herbin).

1631-073X/$ — see front matter © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crma.2009.03.013



674 L. Agelas et al. / C. R. Acad. Sci. Paris, Ser. 1 347 (2009) 673-676

L
K n[}ﬂ(w; Yol n[[y2 zp]
TK _—“"‘-—t-_wL
L 2 AN 7
\ Yy 1
- VK, 1
Yx — \\ [s,y5] :
NK,L ygl\\ - nK;s )
TR di ’ T
~ T ! !
~~~ . Yo 1 \ |
S L 1 8 1
e 1 1
AN 1 1
S ] _ -
K i s z L Tl
\ R T M
Yr
M
(a) The harmonic averaging point (b) Description of the mesh
Fig. 1.

We assume that £2 is an open bounded connected polygonal subset of R? (the adaptation of the present paper to the
three-dimensional case will be the subject of future work), A is a measurable function from £2 to My (R) with d =2,
where we denote by My (R) the set of d x d matrices, such that for a.e. x € £2, A(x) is symmetric, and such that
the set of its eigenvalues is included in [A, A], with A and A € R satisfying 0 < A < X, and f € L?(£2). Our quest is
motivated in particular by the numerical simulation of complex flows in porous media, which includes coupling with
thermodynamics and/or chemistry; because of these complex couplings, the discretization method is often chosen
to be cell-centered in industrial codes. Although several schemes were recently proposed see e.g. [7] and references
therein, there is yet no “ultimate” scheme, i.e. a centered scheme with small stencil, which respects the physical
bounds and yields good approximations even on non-conforming distorted meshes and with a sharp contrast in the

permeabilities (or diffusion coefficients).
The new scheme which we introduce here is designed in the framework of this quest, and has the following char-

acteristics:

(i) it may be used on any polygonal non-conforming mesh;
(ii) it provides the exact solution if A is piecewise constant in polygonal subdomains and u is affine in each of these

subdomains (this property is sought in the multipoint flux approximation schemes given for instance in [1]);
(iii) itleads to a nine-point scheme in the case of quadrilateral meshes which are not too distorted (in a sense involving

the diffusion matrix A);
(iv) itis symmetric and coercive with respect to an adequate discrete norm, and therefore a convergence proof holds.

2. Harmonic averaging points

Consider two domains K and L of R? with different diffusion matrices (or permeabilities) Ax and Ay, separated
by a planar interface o, and let xx € K and x; € L. In order to obtain a scheme with smallest possible stencil,
we seek some point in o where the value of any piecewise affine solution u to (1) can be expressed as a linear
combination of u(xg) and u(x1) only. We show in the next lemma that such a point always exists in the hyperplane

containing o':

Lemma 2.1. Let o be a hyperplane of R?, with d € N* and let K, L be the two open half-spaces with the common
boundary o. Let Axg € Mg(R) and Ap, € My(R) be two given symmetric definite positive matrices, let ng be the
unit vector normal to o oriented from K to L, xg € K and x1 € L be given and dg  (resp. d1. ) the distance from
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xg (resp. xp) to o (see Fig. 1(a)). Let yx and y; € 0 such that xx = —dkx ongr + Y and x;, =dp ongr + yp.
Let y, € o (called the harmonic averaging point) be defined by

v = Adi oy +AkdL oYk dk ,0dL.o
7 Apdg o +AkdL e Ardg o +Akdp o
denoting by Ak = ngy - Axngp, 17{ =(Ag —AxId)ngr, A\p =ngyp - Apngp and A = (Ap — ApId)ngy. Then

the following averaging formula holds, for all functions u defined on R%, affine in K and L, such that u is continuous
on o, and such that AxVu|g -ngp = ApVu -nky:

(A =A%), )

Ardg ou(xp) +Aigdp cu(xg)
Ardg o +Akdr o '

u(y,) = G)

Let us sketch the proof of the lemma. We denote by G the gradient of u in K, with Gx = gxnkr + G%,
G% -ngp =0 and by G, = g ng; + GY, G} - ng; = 0 the gradient of u in L. The continuity property of
u on o first leads to G = G{ = g% and then to dg o8k + dr o8 =u(xr) —ulxg) + (yx —y.) - &°, and
the condition Ax Gk .ng; = ApGp.ngy can be written ggAg — grhr = g°.(A] — A%). Expressing gx with re-
spect to g% and using u(y) = u(xg) + Gg - (y — xg), for all y € o, allows us to write that u(y) = u(xg) +
dk .o hrluber)zulxg )JQZ’; :ﬁ)l;i):d“’ga'(xz_l?‘) + (y — yg) - g°. The point y, is then defined as the unique point

y € o such that the preceding expression no longer depends on g, and the resulting expression for u(y, ) follows.

3. Definition of the scheme

We consider general polygonal, possibly non-conforming, meshes of £2 (as in [4]). Let 7 be the set of control
volumes, that are disjoint open polygonal subsets of 2 such that | Jx 7 K = 2. We denote by Ag the mean value
of Ain K € 7. Let £ be the set of edges of the mesh; we denote by £k the set of the edges of any K € 7. Let
P = {xk, K € T} be the set of the so-called “centers” of the control volumes, which are the approximation points.
We assume that, for all K € 7, K is star-shaped with respect to x g . Let )V be the set of the vertices of the mesh, and
let Vs (resp. Vi) be the set of the vertices of any o € £ (resp. K € 7). For any edge o C 92, we denote by y,, its
center point. For any interior edge o, we denote by y, the harmonic averaging point defined by (2) if this point is
interior to o (we then denote by & the set of such edges), and by the center of o otherwise.

Remark 1 (Harmonic averaging points and meshes). The condition o € &; generally holds for meshes which are not
“too distorted”. It holds in particular if [x ¢, x 7] N o is an interior point to o in the case of identical diffusion matrices
Ag and Ayp. It also holds if the orthogonal projections of xx and x;, on o are interior points to ¢ in the case of
isotropic diffusion matrices Ax and Ay .

Let X7 be the set of all families u = {ug, Uy, Ugs, K € T,0 € £,5 € V5, With uy = uss =0 for o C 982}.
Let Xg— be the subset of all # € X7 such that, for any o € &, u, is defined by:
Ardg oup +Agdp gug
Uy = . 4@
Adi.o +Akdr s
For u € X7, we define by IT7u the piecewise constant function defined on 2, with the constant value ug in K € 7.
Forall K € 7 and s € Vi, we denote by K, the open quadrilateral domain, the boundary of which is composed of the
line segments belonging to the set: Ex s = {[xk, ¥, 1, [Xk, Y51, [8, Y51, [8, Y51}, where o, 0’ € Ek are the two edges
of K with vertex s (see Fig. 1(b)). For all € € £k 5, we denote by n; ¢ the normal vector to € outward to K. For any
u € X7, we denote by u}’s, for any € € £k s, the values defined by:

e ug +u¢
u =

s 5 ife=[xg,y,] and uf =u,s ife=[s,y,] fort=0o0ro". 5)

We then define a piecewise discrete gradient V7 u by its constant values Vg su € R? on the subcells Kj:

Kol Visu= Y lel(uf, —ux)n . ©)

6651{;
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This discrete gradient satisfies the following two fundamental properties, which are also those of the cell piecewise
constant gradient used in [6]:

(1) consistency of V@7 with Vg for a class of regular functions ¢ and their interpolation ¢7 in X7;
(i) weak convergence, as the size of the mesh tends to 0, of V7 u to Vi such that # — u under suitable estimates on
ueXr.

Both properties follow from the choice (6) and the fact that, for any w € RZ, one has: |Kg|w = fa kWX K
property (i) is also a consequence of the choice (4). For all u, v € X7, we define a discrete inner product, expected to
approximate the bilinear form (u, v) = [, AVu - Vu. A natural choice would be [u, v] =g o7 > sy, [, vk s,
where [u, v]x s = |Ks|Ax Vi su - Vi sv. However, this choice yields a non-coercive bilinear form, and therefore, as
in [6], we stabilize it by choosing rather:

(o)=Y Y (. v)ks. with (u,v)ks=|Ks| Ak V- Vksv+ »  agRg uRk (v, (7

KeT seVyg t=0,0'

where ag; > 0, R;(’su =u; —ug — Vg su-(y, —Xxg), for T = o and o’. The scheme is then defined by

findu € X,ﬁf, such that for any v € Xg-, (u,v) = / f)I7v(x)dx. ()
2

This scheme is symmetric; its convergence can be proved under quite general hypotheses on the meshes. Moreover,
in the case where all interior edges satisfy o € &, the edges unknowns u, ¢ can be eliminated vertex by vertex, hence
providing a symmetric cell-centered scheme which has the nine-point stencil on structured quadrilateral meshes (note
that this elimination is also a feature of the O-scheme [2]).

4. Numerical results

We tested the scheme for some of the cases described in the benchmark [5], in particular those with anisotropy and
heterogeneity such as test cases 5 and 6 (geological barrier and drain), and, as expected, the results are exact since
the solution is piecewise affine in these cases. We have also run test case 5 (heterogeneous rotating anisotropy). An
order 2 of convergence is then observed on the L?-norm of the unknown. The finest mesh that we used for this test has
640 x 640 grid blocks, computed in a few minutes on a PC. A direct solver could be used, numbering the unknowns
using classical methods holding for 9-point stencils [3]. The convergence order 2 has also been observed on test cases,
using a mesh inspired from geological studies.
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