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Abstract

Schur studied limits of the arithmetic means s;, of zeros for polynomials of degree n with integer coefficients and simple zeros in
the closed unit disk. If the leading coefficients are bounded, Schur proved that lim sup,,_, o, |sn| < 1 — 4/€/2. We show that s, — 0,
and estimate the rate of convergence by generalizing the Erd6s—Turdn theorem on the distribution of zeros. To cite this article: L.E.
Pritsker, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Moyennes de nombres algébriques dans le disque unité. Schur a étudié les limites des moyennes arithmétiques s, des zéros
pour les polyndomes a coefficients entiers de degré n ayant des zéros simples dans le disque unité fermé. Lorsque les coefficients
dominants restent bornés, Schur a démontré que limsup,,_, ., |sn| < 1 — 4/€/2. Nous prouvons que s, — 0. Nous donnons une
estimation du taux de convergence, grace a une généralisation d’un théoréme de Erd6s—Turan sur la distribution des zéros. Pour
citer cet article : LE. Pritsker, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Schur’s problem and equidistribution of zeros

Let Z, (D) be the set of polynomials of degree n with integer coefficients and all zeros in the closed unit disk D.
We denote the subset of Z, (D) with simple zeros by Z}l (D). Given M > 0, we write P, = a,7" +--- € Z,ﬁ (D, M)
if |a,| < M and P, € Z}l(D) (respectively P, € Z,(D, M) if |a,| < M and P, € Z,(D)). Schur [9, §8] studied the
limiting behavior of the arithmetic means s, of zeros for polynomials from Z! (D, M) as n — oo, where M > 0 is
an arbitrary fixed number. He showed that limsup,,_,  |s,] < 1 — +/€/2, and remarked that this limsup is equal to
0 for monic polynomials from Z, (D) by Kronecker’s theorem [6]. We prove that lim,_,» s, = 0 for any sequence
of polynomials from Schur’s class Z},(D, M), n € N. This result is obtained as a consequence of the asymptotic

equidistribution of zeros near the unit circle. Namely, if {ax }};_, are the zeros of P,, we define the counting measure

T, = % ZZ: 1 8y » Where 8, is the unit point mass at o . Consider the normalized arclength measure 1 on the unit
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circumference T, with d,u(eit ) = %dt. If the 7, converge weakly to 1 as n — oo (7, = ) then lim,_ o0 5, =
limy, s 5o f zdt,(z) = f zdu(z) = 0. Thus Schur’s problem is solved by the following result.

Theorem 1.1. If P,(2) = a,7" +--- € Z,ll(D), n €N, satisfy lim,— o0 |an|'/" =1, then t, %> w as n — oo.

Ideas on the equidistribution of zeros date back to Jentzsch and Szegd, cf. [1, Ch. 2]. They were developed further
by Erd6s and Turdn [4], and many others; see [1] for history and additional references. More recently, this topic
received renewed attention in number theory, e.g. in the work of Bilu [2]. If the leading coefficients of polynomials
are bounded, then we can allow even certain multiple zeros. Define the multiplicity of an irreducible factor Q of P,
as the integer m, > 0 such that Q" divides P,, but Qm"Jrl does not divide P,. If a factor Q occurs infinitely often
in a sequence P,, n € N, then m,, = o(n) means lim,_, o, m,/n = 0. If Q is present only in finitely many P,, then
my, = o(n) by definition.

Theorem 1.2. Assume that P, € Z,(D, M), n € N. If every irreducible factor in the sequence of polynomials P,, has
multiplicity o(n), then T, = 1 as n — oo.

Corollary 1.3. If P,(z) = a, [ [;_,(z — ax), n €N, satisfy the assumptions of Theorem 1.1 or 1.2, then

nlgr;o;;ak =0, meN.

We also show that the norms || P, [|oo := max|;=1 | P,(z)| have at most subexponential growth.

Corollary 1.4. If P,, n € N, satisfy the assumptions of Theorem 1.1 or Theorem 1.2, then

Tim || Pyt =

This result is somewhat unexpected, as we have no direct control of the norm or coefficients (except for the leading
one). For example, P, (z) = (z — 1)" has norm || P, ||cc = 2".

We now consider quantitative aspects of the convergence 7, > 1. As an application, we obtain estimates of the
convergence rate of s, to 0 in Schur’s problem. A classical result on the distribution of zeros is due to Erdés and
Turén [4]. For P,(z) = ZZ:O arzk with a; € C, let N(¢1, ¢2) be the number of zeros in the sector {z € C: 0 < ¢ <
arg(z) < ¢p < 2m}, where ¢ < ¢». Erd6s and Turdn [4] proved that

N(@1.¢2) ¢2— ¢ 1 I P ll oo

The constant 16 was improved by Ganelius, and || P,|loc Was replaced by weaker integral norms by Amoroso
and Mignotte; see [1] for more history and references. Our main difficulty in applying (1) to Schur’s problem
is the absence of an effective estimate for || Pyllco, Pn € Z; (D, M). We prove a new “discrepancy” estimate
via energy considerations from potential theory. These ideas originated in part in the work of Kleiner, and were
developed by Sjogren and Hiising, see [1, Ch. 5]. We also use the Mahler measure of a polynomial P,(z) =
an [Ti—(z — i), defined by M(P,) := exp(% fOZ” log | P, (e"")|dr). Note that M(P,) = lim,_,0 || Pyl p, where
I Pallp := (5= 02” [Py (e")[Pd)!/P, p > 0. Jensen’s formula readily gives M (P,) = |a,|[T{—; max(1, |ox]) [3, p. 3].
Hence M (P,) = |a,| < M forany P, € Z,(D, M).

Theorem 1.5. Let ¢:C — R satisfy |¢p(z) — o) < Alz —t|, z,t € C, and supp(¢p) C {z: |z| < R}. If P,(z) =
an [ [4—; (z — ag) is a polynomial with integer coefficients and simple zeros, then

‘ Z¢<ak>—/¢du

AQR + 1)\/1°gmax(" MPED) s ss, )
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This theorem is related to recent results of Favre and Rivera-Letelier [5], obtained in a different setting. Choosing
¢ appropriately, we obtain an estimate of the means s, in Schur’s problem.

Corollary 1.6. If P, € Z} (D, M) then

I
Zak <8,/ Ogn, n > max(M, 55).

We also have an improvement of Corollary 1.4 for Schur’s class Z,L(D, M).

Corollary 1.7. If { P,}72 | € Zl(D M) then there is some ¢ > 0 such that || P, ||co < ecvrlogn gopn s oo

The proof of Theorem 1.5 gives a result for arbitrary polynomials with simple zeros, and for any continuous ¢
with finite Dirichlet integral D[¢] = f f (¢>§ + ¢>%) dA. Moreover, all arguments may be extended to general sets of
logarithmic capacity 1, e.g. to [—2, 2]. Using the characteristic function ¢ = x£, we can prove general discrepancy
estimates on arbitrary sets, and obtain an Erd6s—Turdn-type theorem. Our results have a number of applications to the
problems on integer polynomials considered in [3].

2. Proofs

Proof of Theorem 1.1. Observe that the discriminant A(P,) := a,zl”_Z]_[l< j<kn (@) — ax)? is an integer, as a
symmetric form in the zeros of P,. Since P, has simple roots, we have A(P,) # 0 and |A(P,)| > 1. Using weak
compactness, we assume that 7, => T, where 7 is a probability measure on D. Let Ky (x, t) := min(— log |x — |, M).
Since 1, X T, = T X T, we obtain for the energy of T that

I[7]: // log|x —¢t|dr(x)dr(¢) = hm (hm / Ky (x,t)dr,(x) drn(t)>

. (1 . Z))«
lim (ngrgo(nZZKM(a/,ak)vL " )) < hm <1}11£1)1or<1)f Zlog —Olk|)

M— o0
J#k j#k
[ | n_2
= liminf — log <liminf — log|a,|”*~* =0.
n—oo n A(P, n—>o0o n2

Thus I[t] < 0. But /[v] > 0 for any probability measure v on D, except for u [7]. Hence t =pu. O

Proof of Theorem 1.2. Let ¢ € C(C). Note that for any € > 0 there are finitely many irreducible factors Q in
the sequence P, such that | f ¢dt(Q) — f ¢du| > €, where t(Q) is the zero counting measure for Q. Indeed, if
we have an infinite sequence of such Q,,, then deg(Q,,) — 00, as there are only finitely many Q,, € Z,(D, M)
of bounded degree. Hence f ¢dt(Qn) — f ¢du by Theorem 1.1. Let the number of such exceptional fac-
tors Q,, be N. Then we have |n [¢dt, —n [¢du| < No(n)maxp|¢ — [¢du| + (n — N)e, n € N. Hence
limsup,_, o | [#dt, — [@du| <€, and lim,_, o [ @ d1, = [ ¢ du after lettinge — 0. O

Proof of Corollary 1.3. Let ¢(z) = 2™ and write lim, 0 [ 2" d7,(z) = [2"du(z) =0. O

Proof of Corollary 1.4. Let ||P,|lc = |Py(zn)|, zn € D, and assume lim,_, z, = zo € D by compactness.
Then || Pylloc = exp(log|Py(z,)|) = lan|exp(n [log|z, — t|dz,(r)). Since 7, => w, Theorem 1.6.8 of [8] gives

limsup,, o || Palsd" < exp(flog|zo — t1du(r)) = 1[8, p. 22]. But || Py lloc > lan| > 1, see [1,p. 16]. O

Proof of Theorem 1.5. Given r > 0, define the measures v; with dvy (o + rei) = dt/(2m), t €[0,2m). Let 7] :=

%Zzzl vy, and estimate | [ ¢ dt, — [¢d1)| < %Zzzl % f0271 ¢ (k) — ¢ (ax + re)|dr < wy(r), where wy(r) :=
SUp|,_¢|<r [#(2) — ¢ ()] is the modulus of continuity of ¢.
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Let py(z) := — f log|z — t|dv(¢) be the potential of a measure v. A direct evaluation gives that Py () =
—logmax(r, |z — ox|) and p,(z) = —logmax(l,|z|) [8, p. 22]. Consider o := 1, — 1, 0(C) = 0. One com-
putes (or see [8, p. 92]) that do = —%(ap(,/am + dps/on_)ds, where ds is the arclength on supp(o) = {|z]| =
1} U (UZ=1 {lz — ax| =r}), and ny are the inner and the outer normals. We now use Green’s identity ffG uAvdA =

Locu %ds — Jfg Vu - VvdA with u = ¢ and v = p, in each component G of {|z| < R} \ supp(o). Since Ap, =0
in G, adding the identities for all G, we obtain that

1 1
’/MU =Z‘// V¢>-VpodA’<E\/D[¢]\/D[po],

lzZISR
where D[¢] = [[(¢? + ¢§) dA is the Dirichlet integral of ¢. It is known that D[p,] = 27 I[c] [7, Thm 1.20],
where I[o] = — [[log|z —t|do(z)do (1) = [ ps do. Since p,,(z) = —logmax(l, |z|), we observe that [ p, du =0,
so that I[o] = [ perdt) —2 [ p,de,. Further, — [ p, dt; = [logmax(l, |z]) d; (z) < Qo <14 log(d +2r) +
Z\ak|>1+r log |ag|)/n < log(l + 2r) + %logM(Pn) - %log |an|. We also have that [ p.r dz) < (— Z#k log|aj —
ax| —nlogr)/n*. We next combine the energy estimates to obtain

2 1 1
Ilo] < =log M(P,) — — log|ay A(Py)| — = logr + 4r.
n n n

Collecting all estimates, we proceed with | [‘¢dt, — [¢dul| < | [¢dt, — [¢dt) |+ ]| [dr, — [pdul < wu(r) +
/D@1 Dips1/(2n) = wy (r) + /DI¢1+/I[o1/(2m). Thus we arrive at the main inequality:

D[¢]
2w

Note that D[¢] < 2 R2A2, as |¢p.| < A and lpy] < Aae. in C. Also, wg(r) < Ar. Since |A(P,)| > 1 and |a,| > 1,
we have |a3A(P,,)| > 1. Hence (2) follows from (3) by letting » = 1/ max(n, M(P,)). O

1/2
‘/q&dtn — /q&du‘ < wy(r) + (glogM(P,,) - izlog|a,$A(P,,)| — l1ogr +4r> ) (3)
n n n

Proof of Corollary 1.6. Since P, has real coefficients, we have that s, = f zdt,(2) = f N(z)dr,(z). We let
@) =NR2), 1zl <1; ¢(2) =RE@)A —loglz]), 1< |z] <e; and ¢(z) =0, |z] > e. An elementary computation
shows that |¢,(z)| < 1 and |¢,(z)| < 1/2 for all z=x +iy € C. The Mean Value Theorem gives |¢(z) — ¢ ()| <

|z — t|maxc ,/¢F + ¢7. Hence we can use Theorem 1.5 with A = V5/2and R=e. O

Proof of Corollary 1.7. Note that log|P,(z)| = nf10g|z — w|dt,(w). For |z] =1+ 1/n, we let ¢(w) =
loglz —w|, [w| < 1; ¢(w) = (1 —loglwl)log|l —zw|, 1 < |w| <e; and ¢(z) =0, |w| > e. Then |¢y(w)| =
O(lz — wI™, |w| < 1;]ge(w)] = O(1 — zw|™ ), 1 < |w| < e; and the same estimates hold for |¢y|. Hence

D¢l = O(ff,<; |z — w2 dA(w)) = O(fll/nr_l dr) = O(logn), and wg(r) < rmaxc,/¢2 +¢2 = rO(n). Let
r = 1/n? and use (3) to obtain |log | P, (z)| — nlog|z|| = O(y/nlogn). O
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