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Abstract

Staggered t-structures are a class of ¢-structures on derived categories of equivariant coherent sheaves. In this Note, we show that
the derived category of coherent sheaves on a partial flag variety, equivariant for a Borel subgroup, admits a staggered z-structure
with the property that all objects in its heart have finite length. As a consequence, we obtain a basis for its equivariant K -theory
consisting of simple staggered sheaves. To cite this article: PN. Achar, D.S. Sage, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Faisceaux échelonnés sur les variétés de drapeaux partiels. Les z-structures échelonnées sont certaines ¢-structures sur des
catégories dérivées des faisceaux cohérents équivariants. Nous montrons ici que la catégorie dérivée des faisceaux cohérents sur
une variété de drapeaux partiels, équivariants sous un sous-groupe de Borel, admet une 7-structure échelonnée telle que tout objet de
son ceeur soit de longueur finie. Par conséquent, 1’ensemble des faisceaux échelonnés simples constitue une base pour sa K -théorie
équivariante. Pour citer cet article : PN. Achar, D.S. Sage, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Let X be a variety over an algebraically closed field, and let G be a linear algebraic group acting on X with
finitely many orbits. Let Coh% (X) be the category of G-equivariant coherent sheaves on X, and let D (X) denote
its bounded derived category. Assume that €oh® (X) has enough locally free objects. Staggered sheaves, introduced
in [1], are the objects in the heart of a certain z-structure on DE(X), generalizing the perverse coherent 7-structure [2].
The definition of this 7-structure depends on the following data: (1) an s-structure on X (see below); (2) a choice of
a Serre—Grothendieck dualizing complex wy € DY (X) [4]; and (3) a perversity, which is an integer-valued function
on the set of G-orbits, subject to certain constraints. When the perversity is “strictly monotone and comonotone,” the
category of staggered sheaves is particularly nice: every object has finite length, and every simple object arises by
applying an intermediate-extension (“IC”) functor to an irreducible vector bundle on a G-orbit.

An s-structure on X is a certain kind of increasing filtration of Cth (X) by Serre subcategories {Cth X)<nlnez,
subject to various axioms (see Section 1). Philosophically, an s-structure plays a role analogous to that of weight
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filtrations in the theory of mixed constructible sheaves. Given an s-structure, let (’ZobG(X )>n C Cth(X ) denote
the right-orthogonal to QZobG(X )<n—1. The staggered codimension of an orbit closure ic : C — X, denoted scod C,
is defined to be codimC + n, where n is the unique integer such that i!Ca)ch € DY(C) is a shift of an object in
(ﬁof)G(C)gn N Qth(C)>,,. (Staggered codimensions are, in general, sensitive to the choice of wy. In this paper,
whenever X is smooth, wy will denote the canonical bundle of X.) Strictly monotone and comonotone perversities
exist if and only if scod D > scod C + 2 whenever D C C. (If this holds, one may take [} scod C | as the perversity.)

The goal of this Note is to establish the existence of strictly monotone and comonotone perversities for suitable
s-structures on partial flag varieties. As a consequence, we obtain a basis for the equivariant K -theory K5(G/P)
consisting of simple staggered sheaves.

1. A gluing theorem for s-structures

If X happens to be a G-homogeneous space (i.e., of the form X = G/H for some closed subgroup H C G),
the axioms for an s-structure are equivalent to the following: (1) If F € (‘:obG(X )<n and G € Qth(X )<m- then
F®G e €oh%(X)<nim- (2) Each €oh®(X), is a Serre subcategory of €oh®(X). (3) If F € €oh®(X)>, and G €
QfobG(X)>m, then F® G € EobG(X)>n+m. If X consists of many G-orbits, the last two axioms must be replaced by
a collection of “local” conditions on all G-stable closed subschemes (see [1] for details), and specifying an s-structure
on X directly can become quite arduous. The following “gluing theorem” lets us instead specify an s-structure on X
by specifying one on each G-orbit:

Theorem 1.1. For each orbit C C X, let Zc C Ox denote the ideal sheaf corresponding to the closed subscheme
ic:C — X. Suppose each orbit C is endowed with an s-structure, and that iéIc|c € QobG(C)g_l. There is a
unique s-structure on X whose restriction to each orbit is the given s-structure.

Proof. This statement is nearly identical to [1, Theorem 10.2]. In that result, the requirement that iéIC|c €
Q:Uf)G(C)g_l is replaced by the following two assumptions: (F1) For each orbit C, if.Zc|c € Q:Uf)G(C)g(). (F2) Each
F e Q:of)G(C)gw admits an extension F € QZOF)G(E) whose restriction to any smaller orbit C’ C C is in CobG(C/)gw.
Condition (F1) is trivially implied by the stronger assumption that i ézclc € Q:UhG(C)g_ 1. It suffices, then, to show
that (F2) is implied by it as well. Given F € Qth(C)gw, let G € eth(é) be some sheaf such that G|¢c >~ F.
Let C' C C ~. C be a maximal orbit (with respect to the closure partial order) such that it.Glc ¢ Q:O[’)G(C/)gw. af
there is no such C’, then G is the desired extension of F, and there is nothing to prove.) Let v € Z be such that
it.Glc € Q:O[]G(C,)gv. By assumption, we have v > w. Let ' =G ® I?”_w. Since Z¢/|y g is isomorphic to the
structure sheaf of X \ C’, we see that G’ |5\5, ~ G| c\c On the other hand, according to axiom (1) above, the fact
that i, Zc/|cr € €oh% (C')<— implies that i¥,G' | ~i%,Glor ® (i5Zcrlc)® ™ € €oh%(C')<y. Thus, G’ is a new
extension of F such that the number of orbits in C \ C where (F2) fails is fewer than for G. Since the total number of
orbits is finite, this construction can be repeated until an extension F satisfying (F2) is obtained. O

2. s-structures on Bruhat cells

Let G be a reductive algebraic group over an algebraically closed field, and let T C B C P be a maximal torus, a
Borel subgroup, and a parabolic subgroup, respectively, and let L be the Levi subgroup of P containing 7. The Lie
algebras of G, P, and B are denoted g, b, and p.

Let W be the Weyl group of G (with respect to T'), and let @ be its root system. Let @ be the set of positive roots
corresponding to B. Let W, C W and @, C @ be the Weyl group and root system of L, and let ®p = &, U &+,
Let WX C W be the set of minimal-length right coset representatives for Wy . For each w € W', we fix once and
for all a representative in G, also denoted w. We put By, = wBw~! and P, = wPw™!, and we write by, and Pw
for their Lie algebras. Let X7, denote the Bruhat cell BwP /P, let X,, denote its closure (a Schubert variety), and let
iw:Xw — G/P be the inclusion. Let Z,, denote the ideal sheaf on G/ P corresponding to X,.

Let A denote the weight lattice of T, and let p = % Y @T. (Foraset¥ C &, we write “Y_ ¥ for Y, c.) For
any w € W, we define various subsets of @7 and elements of A as follows:
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Ow)y=o*Nw@h), zw)=) Mw), Miw)=e*Nw@\dr), m(w)=) Mr(w),
Ow) =0T Nw(@), G(w):Z@(w), Orw)=d T Nw(@ \ ?;), GL(w):Z@L(w).

Let (-,-) denote a W-invariant positive-definite bilinear form on A such that (2p,A) € Z for all L € A. Now,
for w € WL, the category Coh®(X ) 1s equivalent to the category Rep(B,, N B) of representations of the isotropy
group P, N B = By, N B. We define an s-structure on X;, via this equivalence as follows: CohB (XZ)) a={Ve

Rep(By, N B) | (L, —2wp) < n for all weights A occurring in V'}. It follows that @ohB(XZ})>,, ~{V e Rep(By,NB) |
(A, —2wp) = n for all weights A occurring in V'}. Below, we regard wxs and i, Z,, as objects of Rep(By, N B):

Lemma 2.1. The T-weight on wxs, is —0(w), and the set of T-weights on i}, Ty, is I (w).

Proof. For any weight ¢ € A, let Vy, denote the 1-dimensional T-representation of weight v, and for any subset
U CAlet VY) = 691//6\1/ Vy . The tangent space to G/P at the point wP/P is g/p,. As a T-representation,
this is isomorphic to V(w(® \ @p)) =~ V(w(®~ \ @1)). The tangent space to the B-orbit through that point is
the subspace b/b Npy, = V(@T Nw(P~ \ ®1)) = V(O (w)), and the normal space is the quotient g/ (b + p,,) =
V(@™ Nw(@™ \ @) > V(=TI (w)). Since the canonical bundle wys is the top exterior power of the cotangent
bundle, and i} Z,, is the conormal bundle, the result follows. O

Since (o, —2wp) = (w™ e, —2p) < 0 for all & € IT; (w), we see from Lemma 2.1 that inZwlxs € CohB(X;j))g_l,
and then Theorem 1.1 gives us an s-structure on G/ P. Separately, Lemma 2.1 also tells us that scod X, = codim X, +
(—61 (w), —2wp). Recall that because w € WL, we have codim X,, = |@+ \ @] — €(w) and O (w) = O(w). (See
[3, Chap. 2].) Moreover, (—60(w), —2wp) = (w‘le(w), 2p) = (—G(w_l), 2p). Combining these observations gives
us the following theorem:

Theorem 2.2. There is a unique s-structure on G/P compatible with those on the various X;,. For w € WL, the
staggered codimension of X, with respect to wg/p, is given by scod X,y = |®T\ @1 | — L(w) — (0 (w™h), 2p).

3. Main result

Theorem 3.1. With respect to the s-structure and dualizing complex of Theorem 2.2, DB(G/P) admits a strictly
monotone and comonotone perversity function. For any such perversity, all objects in the heart of the corresponding
staggered t-structure have finite length. In particular, the set of simple staggered sheaves {ZC(X,, Oxs (1))}, where
A € A and w e WE, forms a basis for KB (G/ P).

By the remarks in the introduction, this theorem follows from Proposition 3.6 below. Throughout this section, the
notation “u - v” for the product of u, v € W will be used to indicate that £(u#v) = £(u) + £(v). Note that if s is a simple

reflection corresponding to a simple root «, £(sw) > €¢(w) if and only if « € IT(w).

Lemma 3.2. Let s be a simple reflection, and let « be the corresponding simple root. If £L(sw) > €(w), then w(sw) =
st(w) + o and 0 (sw) = sO(w) + «.

Proof. Since I1(s) = @t \ {a}, it is easy to see that if & € IT(w), then IT(sw) = s(IT(w) \ {«}), and hence that
m(sw) =s(m(w) —a) =sm(w) + «. The proof of the second formula is similar. O

Lemma 3.3. For any w € W, we have (w(w), 0(w)) =0.

Proof. Note that I7T(w) U @ (w) = ®@T. Also, since —O(w) = ®~ Nw(PT), we have IT(w) U —O(w) = w(d ™).
Thus, 7 (w)+6(w) =2p, and 7(w) —0(w) = w(2p). Then 4(x(w), O (w)) = (w(w)+6(w), T (w)+6(w)) — (mw(w) —
O(w), T(w) —O(w)) = (2p,2p) — (w2p), w(2p))=0. O

Proposition 3.4. If « € IT(w) is a simple root, then (o, 8 (w)) < 0.
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Proof. Let s denote the simple reflection corresponding to «, and let y € ® (w). Of course, if sy =y, then (¢, y) = 0.
If sy # y but sy € @ (w) as well, then («, y 4+ sy) = 0. It remains to show that if sy ¢ & (w), then («, y) < 0.
Suppose instead that («, ) > 0, and consider (sy, w(2p)) = (y, w(2p)) — (", ¥} {a, w(2p)). Since y € w(P~) and
a € w(®™) by assumption, we have (y, w(2p)) < 0 and {a, w(2p)) > 0. Also, (@, y) > 0 since (a, y) > 0, so
the calculation above shows that {sy, w(2p)) < 0, and hence that sy € w(® ™). But clearly sy € ®T as well (since
y # a), so we find that sy € @ (w), a contradiction. O

Proposition 3.5. Let s be a simple reflection, corresponding to the simple root a. Let v, w € W be such that £ (vsw) =
L(v) + 1+ £(w). Then (w(vw),2p) — (r(vsw),2p) = (1 — (a", G(U_l)))(w_la, 20) > 0.

Proof. We proceed by induction on £(v). First, suppose that v = 1. Note that 6(v~1) = 0. Since 20 = (w) + 6(w),
Lemma 3.3 implies that (7w (w), 2p) = (w(w), 7(w)). Similarly,

(m(sw), 2p) = (m(sw), w(sw)) = (s (W) + o, 57 (W) + )
= <s7r(w), sn(w)) + 2<s7r(w), a) + (o, a) = (n(w), n(u))) + 2<n(w), S0l> + (20, a)
= (T (w), 2p) = 2{w (W), &) + (7 (w) + O(w), &) = {7 (w), 2p) — (7 (W) — O(w), ).
It is easy to see that w(w) — O (w) = w(2p), whence it follows that (7 (w), 2p) — (w(sw), 2p) = (w ™', 2p). Finally,
the fact that £(sw) > £(w) implies that w™'a € @, so (w™la, 2p) > 0.
Now, suppose £(v) > 1, and write v = ¢ - x, where ¢ is a simple reflection with simple root 8. Using the special

case of the proposition that is already established, we find (7 (xsw), 2p) — (w(txsw),2p) = (wlsx~18,2p) and
(m(xw), 2p) — (m(txw),2p) = (w'x~1 B, 2p). Using the fact that sx 'S =x"18 — («¥, x "' B)a, we find

(n’(txw), 2,0) — (n(txsw), 2,0) = ((n(xu)), 2,0) — (n(xsw), 2,0)) + (<w_1sx_1/3, 2,0) — (u)_lx_l,B, 2,0))
= (1 — (otv, Q(x_l)»(w_la, 2,0) — <oev,x_1,3><w_la, 2,0) = (1 — (otv, G(x_l) +x_1,6>)(w_lot, 2,0).
An argument similar to that of Lemma 3.2 shows that o(x~1h + x_lﬂ =0(x"1r) =0, so the desired for-

mula is established. Since £(vs) > £(v), we also have £(sv~!) > £(v™!), and then Proposition 3.4 tells us that
(@V,0(w™h) 0. Thus, (r(vw), 2p) — (w(wsw),2p) >0. O

The preceding proposition implies that for any v,w € W with v < w in the Bruhat order, (6(v),2p) —
(0 (w),2p) <0. When v, w € Wi, we deduce from Theorem 2.2 the following result, and thus establish Theorem 3.1:

Proposition 3.6. If X, C Xy, then scod X, — scod X, > 2.

Remark 3.7. Here is a sketch of an alternate, geometric proof of this proposition, following a suggestion of the
referee. It suffices to show that v < w implies (6 (v), 2p) — (8 (w), 2p) < 0. That is equivalent to showing that the map
w > (w(2p), 2p) is strictly decreasing, and then in turn to showing that the angle between the vectors w(2p) and 2p
strictly increases as a function of w. That can be deduced from the fact that if v < w and w = rv for some reflection
t, then 2p and v(2p) both lie on the same side of the reflecting hyperplane for ¢, and w(2p) lies on the other.
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