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Abstract

We give a simple proof of a functional version of the Blaschke–Santaló inequality due to Artstein, Klartag and Milman. The
proof is by induction on the dimension and does not use the Blaschke–Santaló inequality. To cite this article: J. Lehec, C. R. Acad.
Sci. Paris, Ser. I 347 (2009).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Une preuve directe de l’inégalité de Santaló fonctionnelle. On présente une démonstration simple d’une version fonctionnelle
de l’inégalité de Blaschke–Santaló, due à Artstein, Klartag et Milman. On procède par récurrence sur la dimension, sans faire appel
à l’inégalité ensembliste. Pour citer cet article : J. Lehec, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

For x, y ∈ R
n, we denote their inner product by 〈x, y〉 and the Euclidean norm of x by |x|. If A is a subset of R

n,
we let A◦ = {x ∈ R

n | ∀y ∈ A, 〈x, y〉 � 1} be its polar body. The Blaschke–Santaló inequality states that any convex
body K in R

n with center of mass at 0 satisfies

voln(K)voln
(
K◦) � voln(D)voln

(
D◦) = v2

n, (1)

where voln stands for the volume, D for the Euclidean ball and vn for its volume. Let g be a non-negative Borel
function on R

n satisfying 0 <
∫

g < ∞ and
∫ |x|g(x)dx < ∞, then bar(g) = (

∫
g)−1(

∫
g(x)x dx) denotes its center

of mass (or barycenter). The center of mass (or centroid) of a measurable subset of R
n is by definition the barycenter

of its indicator function.
Let us state a functional form of (1) due to Artstein, Klartag and Milman [1]. If f is a non-negative Borel function

on R
n, the polar function of f is the log-concave function defined by

f ◦(x) = inf
y∈Rn

(
e−〈x,y〉f (y)−1).
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Theorem 1.1 (Artstein, Klartag, Milman). If f is a non-negative integrable function on R
n such that f ◦ has its

barycenter at 0, then
∫
Rn

f (x)dx

∫
Rn

f ◦(y)dy �
(∫

Rn

e− 1
2 |x|2 dx

)2

= (2π)n.

In the special case where the function f is even, this result follows from an earlier inequality of Keith Ball [2]; and
in [4], Fradelizi and Meyer prove something more general (see also [5]). In the present Note we prove the following:

Theorem 1.2. Let f and g be non-negative Borel functions on R
n satisfying the duality relation

∀x, y ∈ R
n, f (x)g(y) � e−〈x,y〉. (2)

If f (or g) has its barycenter at 0 then∫
Rn

f (x)dx

∫
Rn

g(y)dy � (2π)n. (3)

This is slightly stronger than Theorem 1.1 in which the function that has its barycenter at 0 should be log-concave.
The point of this Note is not really this improvement, but rather to present a simple proof of Theorem 1.1. Theorem 1.2
yields an improved Blaschke–Santaló inequality, obtained by Lutwak in [6], with a completely different approach.

Corollary 1.3. Let S be a star-shaped (with respect to 0) body in R
n having its centroid at 0. Then

voln(S)voln
(
S◦) � v2

n. (4)

Proof. Let NS(x) = inf{r > 0 | x ∈ rS} be the gauge of S and φS = exp(− 1
2N2

S ). Integrating φS and the indicator
function of S on level sets of NS , it is easy to see that

∫
Rn φS = cn voln(S) for some constant cn depending only on

the dimension. Replacing S by the Euclidean ball in this equality yields cn = (2π)n/2v−1
n . Therefore it is enough to

prove that∫
φS

∫
φS◦ � (2π)n. (5)

Similarly, it is easy to see that bar(φS) = c′
n bar(S) = 0. Besides, we have 〈x, y〉 � NS(x)NS◦(y) � 1

2NS(x)2 +
1
2NS◦(y)2, for all x, y ∈ R

n. Thus φS and φS◦ satisfy (2), then by Theorem 1.2 we get (5). �
2. Main results

Theorem 2.1. Let f be a non-negative Borel function on R
n having a barycenter. Let H be an affine hyperplane

splitting R
n into two half-spaces H+ and H−. Define λ ∈ [0,1] by λ

∫
Rn f = ∫

H+ f . Then there exists z ∈ R
n such

that for every non-negative Borel function g

If
(∀x, y ∈ R

n, f (z + x)g(y) � e−〈x,y〉) then
∫
Rn

f

∫
Rn

g � 1

4λ(1 − λ)
(2π)n. (6)

In particular, in every median H (λ = 1
2 ) there is a point z such that for all g

If
(∀x, y ∈ R

n, f (z + x)g(y) � e−〈x,y〉) then
∫
Rn

f

∫
Rn

g � (2π)n. (7)

A similar result concerning convex bodies (instead of functions) was obtained by Meyer and Pajor in [7].
Let us derive Theorem 1.2 from the latter. Let f,g satisfy (2). Assume for example that bar(g) = 0, then 0 cannot

be separated from the support of g by a hyperplane, so there exists x1, . . . , xn+1 ∈ R
n such that 0 belongs to the
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interior of conv{x1 . . . xn+1} and g(xi) > 0 for i = 1 . . . n + 1. Then (2) implies that f (x) � Ce−‖x‖, for some C > 0,
where ‖x‖ = max(〈x, xi〉 | i � n + 1). Assume also that

∫
f > 0, then f has a barycenter. Apply the “λ = 1/2” part

of Theorem 2.1 to f . There exists z ∈ R
n such that (7) holds. On the other hand, by (2)

f (z + x)g(y)e〈y,z〉 � e−〈z+x,y〉e〈y,z〉 = e−〈x,y〉

for all x, y ∈ R
n. Therefore∫

Rn

f (x)dx

∫
Rn

g(y)e〈y,z〉 dy � (2π)n. (8)

Integrating with respect to g(y)dy the inequality 1 � e〈y,z〉 − 〈y, z〉 we get∫
Rn

g(y)dy �
∫
Rn

g(y)e〈y,z〉 dy −
∫
Rn

〈y, z〉g(y)dy.

Since bar(g) = 0, the latter integral is 0 and together with (8) we obtain (3). Observe also that this proof shows that
Theorem 2.1 in dimension n implies Theorem 1.2 in dimension n.

In order to prove Theorem 2.1, we need the following logarithmic form of the Prékopa–Leindler inequality. For
details on Prékopa–Leindler, we refer to [3].

Lemma 2.2. Let φ1, φ2 be non-negative Borel functions on R+. If φ1(s)φ2(t) � e−st for every s, t in R+, then∫
R+

φ1(s)ds

∫
R+

φ2(t)dt � π

2
. (9)

Proof. Let f (s) = φ1(es)es , g(t) = φ2(et )et and h(r) = exp(−e2r/2)er . For all s, t ∈ R we have
√

f (s)g(t) �
h( t+s

2 ), hence by Prékopa–Leindler
∫

R
f

∫
R

g � (
∫

R
h)2. By change of variable, this is the same as

∫
R+ φ1

∫
R+ φ2 �

(
∫

R+ e−u2/2 du)2 which is the result. �
3. Proof of Theorem 2.1

Clearly we can assume that
∫

f = 1. Let μ be the measure with density f . In the sequel we let fz(x) = f (z + x)

for all x, z.
We prove the theorem by induction on the dimension. Let f be a non-negative Borel function on the line, let

r ∈ R and λ = μ([r,∞)) ∈ [0,1]. Let g satisfy f (r + s)g(t) � e−st , for all s, t . Apply Lemma 2.2 twice: first to
φ1(s) = f (r + s) and φ2(t) = g(t) then to φ1(s) = f (r − s) and φ2(t) = g(−t). Then∫

R+

fr

∫
R+

g � π

2
and

∫
R−

fr

∫
R−

g � π

2
.

Therefore
∫

R+ g � π
2λ

and
∫

R− g � π
2(1−λ)

, which yields the result in dimension 1.
Assume the theorem to be true in dimension n− 1. Let H be an affine hyperplane splitting R

n into two half-spaces
H+ and H− and let λ = μ(H+). Provided that λ �= 0,1 we can define b+ and b− to be the barycenters of μ|H+
and μ|H− , respectively. Since μ(H) = 0, the point b+ belongs to the interior of H+, and similarly for b−. Hence the
line passing through b+ and b− intersects H at one point, which we call z. Let us prove that z satisfies (6), for all g.
Clearly, replacing f by fz and H by H − z, we can assume that z = 0. Let g satisfy

∀x, y ∈ R
n, f (x)g(y) � e−〈x,y〉. (10)

Let e1, . . . , en be an orthonormal basis of R
n such that H = e⊥

n and 〈b+, en〉 > 0. Let v = b+/〈b+, en〉 and A be the
linear operator on R

n that maps en to v and ei to itself for i = 1 . . . n − 1 and let B = (A−1)t . Define

F+ :y ∈ H 
→
∫

f (y + sv)ds and G+ :y′ ∈ H 
→
∫

g(By′ + ten)dt.
R+ R+
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By Fubini, and since A has determinant 1,
∫
H

F+ = ∫
H+ f ◦ A = μ(H+) = λ. Also, letting P be the projection with

range H and kernel Rv, we have

bar(F+) = 1

λ

∫
H+

P(Ax)f (Ax)dx = 1

λ
P

( ∫
H+

xf (x)dx

)
= P(b+),

and this is 0 by definition of P . Since 〈Ax,Bx′〉 = 〈x, x′〉 for all x, x′ ∈ R
n, we have 〈y + sv,By′ + ten〉 = 〈y, y′〉+ st

for all s, t ∈ R and y, y′ ∈ H . So (10) implies

f (y + sv)g(By′ + ten) � e−st−〈y,y′〉.

Applying Lemma 2.2 to φ1(s) = f (y + sv) and φ2(t) = g(By′ + ten) we get F+(y)G+(y′) � π
2 e−〈y,y′〉 for every

y, y′ ∈ H . Recall that bar(F+) = 0, then by the induction assumption (which implies Theorem 1.2 in dimension
n − 1)∫

H

F+
∫
H

G+ � π

2
(2π)n−1, (11)

hence
∫
H+ g(Bx)dx � 1

4λ
(2π)n. In the same way

∫
H− g(Bx)dx � 1

4(1−λ)
(2π)n, adding these two inequalities, we

obtain∫
Rn

g(Bx)dx � 1

4λ(1 − λ)
(2π)n

which is the result since B has determinant 1.
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