
C. R. Acad. Sci. Paris, Ser. I 346 (2008) 1257–1260
http://france.elsevier.com/direct/CRASS1/

Partial Differential Equations

New characterization of the kernel of the n-dimensional Laplace
operator in exterior domains

Chérif Amrouche, Huy Hoang Nguyen

Laboratoire de mathématiques appliquées, CNRS UMR 5142, Université de Pau et des Pays de l’Adour, IPRA,
avenue de l’Université, 64013 Pau, France

Received 8 July 2008; accepted 21 October 2008

Available online 22 November 2008

Presented by Philippe G. Ciarlet

Abstract

In this Note, we study the characterization of the kernel of the Laplace operator with Dirichlet boundary conditions in exterior
domains. We consider data in weighted Sobolev spaces. To cite this article: C. Amrouche, Huy Hoang Nguyen, C. R. Acad. Sci.
Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Nouvelle caractérisation du noyau du laplacien en domaine extérieur. Nous étudions dans cette Note la caractérisation du
noyau de l’opérateur laplacien avec des conditions de Dirichlet au bord dans un ouvert extérieur. Nous considérons des données
dans des espaces de Sobolev avec poids. Pour citer cet article : C. Amrouche, Huy Hoang Nguyen, C. R. Acad. Sci. Paris, Ser. I
346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let Ω ′ be a bounded open region of R
n (n � 2), not necessarily connected, with a Lipschitz-continuous boundary

Γ and let Ω be the complement of Ω ′. We suppose that Ω ′ has a finite number of connected components and each
connected component has a connected boundary, so that Ω is connected. For convenience, the origin of the coordinate
frame is attached to Ω ′. The purpose of this Note is to characterize the kernel Ap,q(Ω) of the Laplace operator with
Dirichlet boundary conditions:

Ap,q(Ω) = {
z ∈ W

1,p

0 (Ω) + W
1,q

0 (Ω); �z = 0 in Ω and z = 0 on Γ
}
. (1)

The motivation for studying the space Ap,q(Ω) is the regularity problem of Laplace equation. Let f ∈ W
−1,p

0 (Ω),

g ∈ W
1− 1

p
,p

(Γ ) and u ∈ W
1,p

0 (Ω) be a solution of the following system:

−�u = f in Ω and u = g on Γ.
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Recall that a solution u exists and is unique if and only if f and g satisfy the compatibility condition: for any
ϕ ∈ Ap′

(Ω),

〈f,ϕ〉
W

−1,p
0 (Ω)×W̊

1,p′
0 (Ω)

=
〈
g,

∂ϕ

∂n

〉
W

1− 1
p ,p

(Γ )×W
−1
p ,p′

(Γ )

. (2)

If, in addition, f ∈ W
−1,q

0 (Ω), g ∈ W
1− 1

q
,q

(Γ ) with p < q satisfying the compatibility condition (2) by replacing

p by q , the question “Does the solution u belong to W
1,q

0 (Ω)?” arises. Since there exists v ∈ W
1,q

0 (Ω) satisfying
−�v = f in Ω and v = g on Γ , from Theorem 2.1 we obtain u − v ∈ Ap,q(Ω). Therefore, if q < n or q = n = 2,
then u = v and u ∈ W

1,q

0 (Ω). Otherwise, u = v + λ ∈ W
1,q

0 (Ω) with λ ∈ Ap,q(Ω).
Since the problem is posed in a n-dimensional exterior domain, it is important to specify the behavior at infinity for

the data and solutions. We have chosen to impose such conditions by setting our problem in weighted Sobolev spaces
which provide a correct functional setting for unbounded domains (see [2] for more details). It means that the growth
and decay of functions at infinity are expressed by means of weights, in particular, the function in these weighted
Sobolev spaces satisfies an optimal weighted Poincaré-type inequality. In the whole text, bold characters are used for
vector or matrix fields. We now introduce the definition of weighted Sobolev spaces and some its properties. A typical

point in R
n is denoted by x = (x1, . . . , xn) and its norm is given by r = |x| = (x2

1 + · · · + x2
n)

1
2 . We define the weight

function ρ(x) = 1+ r . For each p ∈ R and 1 < p < ∞, the conjugate exponent p′ is given by the relation 1
p

+ 1
p′ = 1.

We now define the weighted Sobolev space W
1,p

0 (Ω) = {u ∈ D′(Ω), u
w

∈ Lp(Ω),∇u ∈ Lp(Ω)}, where

w =
{

(1 + r) if p �= n,

(1 + r) ln(2 + r) if p = n.

This space is a reflexive Banach space when endowed with the norm: ‖u‖
W

1,p
0 (Ω)

= (‖ u
w

‖p

Lp(Ω)
+ ‖∇u‖p

Lp(Ω)
)1/p .

We note that the logarithmic weight only appears if p = n and all the local properties of W
1,p

0 (Ω) coincide with

those of the corresponding classical Sobolev space W 1,p(Ω). We set W̊
1,p

0 (Ω) = D(Ω)W
1,p
0 (Ω) and we denote the

dual space of W̊
1,p

0 (Ω) by W
−1,p′
0 (Ω), which is a space of distributions. When Ω = R

n, we have W
1,p

0 (Rn) =
W̊

1,p

0 (Rn). We have the algebraic and topological embeddings W
1,p

0 (Ω) ↪→ W
0,p

−1 (Ω) if p �= n, where W
0,p

−1 (Ω) =
{u ∈ D′(Ω), u

1+r
∈ Lp(Ω)}. For all λ ∈ N

n where 0 � |λ| � 2, the mapping u ∈ W
1,p

0 (Ω) → ∂λu ∈ W
1−|λ|,p
0 (Ω)

is continuous. Also recall the following Sobolev embeddings (see [1]): W
1,p

0 (Ω) ↪→ Lp∗
(Ω) where p∗ = np

n−p
and

1 < p < n. Note that R ⊂ W
1,p

0 (Ω) if and only if p � n. We next set Ap(Ω) = {y ∈ W
1,p

0 (Ω); �y = 0 in Ω and
y = 0 on Γ }. In the two-dimensional space, let U = 1

2π
ln r be the fundamental solution of Laplace’s equation. We

now define

u0 = U ∗
(

1

|Γ |δΓ

)
, (3)

where δΓ is the distribution defined by ∀ϕ ∈ D(R2), 〈δΓ ,ϕ〉 = ∫
Γ

ϕ dσ .
The next lemma characterizes the kernel Ap(Ω) (see [3]).

Lemma 1.1. Let 1 < p < ∞ and suppose that Γ is of class C1,1.

(i) If p < n or if p = n = 2, then Ap(Ω) = {0}.
(ii) If p � n � 3, then Ap(Ω) = {c(λ− 1); c ∈ R}, where λ ∈ ⋂

r> n
n−1

W
1,r
0 (Ω) is the unique solution of the follow-

ing problem

�λ = 0 in Ω and λ = 1 on Γ. (4)

(iii) If p > n = 2, then Ap(Ω) = {c(μ − u0); c ∈ R}, where u0 is defined by (3) and μ is the only solution in⋂
r>2 W

1,r
0 (Ω) of the problem

�μ = 0 in Ω and μ = u0 on Γ. (5)
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Remark 1.2. When Γ is the unit sphere of R
n (n � 3), then λ = 1

|x|n−2 . Note that ∇λ ∈ Ln/(n−1),∞(Rn) and λ
w

∈
Ln/(n−1),∞(Rn), where the weak-type space Lp,∞(Rn) is defined as follows

u ∈ Lp,∞(
R

n
) ⇔ sup

t>0
t

( ∫
{x∈Rn,u(x)|>t}

dx

)1/p

< ∞.

Then we will write λ ∈ W
1,n/(n−1)

0,∞ (Rn).

2. Main results

In this section, we give a theorem that characterizes the kernel Ap,q(Ω) of the Laplace operator with Dirichlet
boundary conditions: Ap,q(Ω) = {z ∈ W

1,p

0 (Ω) + W
1,q

0 (Ω); �z = 0 in Ω and z = 0 on Γ }, with 1 < p < q < ∞.

Theorem 2.1. Let 1 < p < q < ∞ and Ω ⊂ R
n be an exterior domain with C1,1 boundary.

(i) If q < n or if q = n = 2, then Ap,q(Ω) = {0}.
(ii) If q � n � 3, then Ap,q(Ω) = {c(λ − 1); c ∈ R} where λ ∈ ⋂

r> n
n−1

W
1,r
0 (Ω) is the unique solution of the

problem (4).
(iii) If q > n = 2, then Ap,q(Ω) = {c(μ − u0); c ∈ R} where μ ∈ ⋂

r>2 W
1,r
0 (Ω) is the unique solution of the

problem (5).

Proof. Let z ∈ Ap,q(Ω), then z = u − v with u ∈ W
1,p

0 (Ω), v ∈ W
1,q

0 (Ω) and u = v on Γ . Let now ṽ ∈ W
1,q

0 (Rn)

be an extension of v outside Ω . We set ũ = u in Ω , ũ = ṽ outside Ω and z̃ = ũ − ṽ. It is easy to see that z̃ is in
W

1,p

0 (Rn) + W
1,q

0 (Rn) and z̃ = 0 outside Ω . Set now h = �z̃. As supph ⊂ Γ , then h ∈ W
−1,p

0 (Rn).
A. If n � 3: We consider 3 following cases:
1) The case n

n−1 < p: We know that there exists w ∈ W
1,p

0 (Rn) such that �w = h in R
n. The difference w− z̃ belongs

to W
1,p

0 (Rn) + W
1,q

0 (Rn) and is harmonic in R
n. We begin by supposing that q < n. We deduce that w = z̃ in R

n

and then w vanishes on Γ . Since p < n, thanks to Lemma 2.10 [3], w is unique and w = 0 in Ω , i.e., z = 0 in Ω .
Now if q � n, there exists a constant c such that w − z̃ = c and w = c on Γ . If p < n, from Lemma 2.10 [3], then w

is unique and w = cλ in Ω where λ ∈ ⋂
r> n

n−1
W

1,r
0 (Ω) is the unique solution of the system (4). Therefore, we can

deduce z = c(λ − 1) in Ω . If p � n, it is easy to deduce that w is unique up to a constant and we still obtain that
z = c(λ − 1) in Ω .
2) The case 1 < p < n

n−1 : In the n-dimensional case, let E(x) = cn|x|2−n be the fundamental solution of Laplace’s

equation. As δ ∈ W
−1,p

0 (Rn) is the Dirac distribution, then there exists a unique w0 ∈ W
1,p

0 (Rn) such that �w0 =
h − δ〈h,1〉

W
−1,p
0 (Rn)×W

1,p′
0 (Rn)

in R
n. We now set that w = w0 − E〈h,1〉

W
−1,p
0 (Rn)×W

1,p′
0 (Rn)

. Then �w = h in R
n

and w − z̃ is harmonic. The restriction of w to Ω belongs to W
1,p

0 (Ω) + W
1,r
0 (Ω) for all r > n

n−1 . The function w

belongs to W
1,p

0 (Rn) + W
1,n/(n−1)

0,∞ (Rn), i.e., ∇w ∈ Lp(Rn) + Ln/(n−1),∞(Rn). Hence, the difference w − z̃ belongs

to W
1,p

0 (Rn) + W
1,n/(n−1)

0,∞ (Rn) + W
1,q

0 (Rn).
a) The case q < n: We deduce w = z̃ in R

n and w = 0 on Γ . Then �w0 = 0 in Ω and w0 = 〈h,1〉E on Γ . As p′ > n,
for any ϕ ∈ Ap′

(Ω) and for any ψ ∈ D(Ω), we have the following Green’s formula∫
Ω

ψ�ϕ dx =
∫
Ω

ϕ�ψ dx +
〈
∂ϕ

∂n
,ψ

〉
Γ

−
〈
ϕ,

∂ψ

∂n

〉
Γ

,

where 〈·,·〉Γ denotes the duality between W
−1
p

,p′
(Γ ) and W

1− 1
p

,p
(Γ ). Then, we deduce that

∫
Ω

ϕ�ψ dx =
−〈 ∂ϕ

∂n ,ψ〉Γ . Thanks to the density of D(Ω) in W
1,p

0 (Ω), for all ϕ ∈ Ap′
(Ω) and for all v ∈ W

1,p

0 (Ω), we have

〈�v,ϕ〉
W

−1,p
0 (Ω)×W̊

1,p′
0 (Ω)

= −
〈
∂ϕ

∂n
, v

〉
−1
p ,p′ 1− 1

p ,p
. (6)
W (Γ )×W (Γ )
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Applying (6) with v = w0 ∈ W
1,p

0 (Ω) and ϕ = λ − 1 ∈ Ap′
(Ω), we obtain 〈h,1〉〈E, ∂λ

∂n 〉
W

1− 1
p ,p

(Γ )×W
−1
p ,p′

(Γ )
= 0.

Note that, 〈E, ∂λ
∂n 〉Γ = 〈 ∂E

∂n , λ〉Γ = ∫
Γ

∂E
∂n . Let BR the open ball of radius R > 0 centered at the origin such that Ω ′ ⊂

BR and set that ΩR = Ω ∩ BR . Then we have 0 = ∫
ΩR

�E = ∫
Γ

∂E
∂n − ∫

∂BR

∂E
∂n . It is easy to verify that

∫
∂BR

∂E
∂n = 1,

then 〈h,1〉 = 0. Consequently, from Lemma 2.10 [3], we deduce w0 = 0 in Ω . Therefore, w = 0 and z = 0 in Ω .
b) The case q � n: There exists a constant c such that w − z̃ = c in R

n and w = c on Γ . Then, �w0 = 0 in Ω and
w0 = c + 〈h,1〉E on Γ . Applying again (6), we obtain 〈c + 〈h,1〉E, ∂λ

∂n 〉Γ = 0. Set that μ = c + 〈h,1〉E on Γ . It

is not difficult to see that μ ∈ W 1− 1
r
,r (Γ ) with any r ∈ ] n

n−1 , n[. Then there exists a unique y ∈ W
1,r
0 (Ω) such that

�y = 0 in Ω and y = μ on Γ . Then, we deduce that y − w0 ∈ Ap,r (Ω). Thanks to the results for the case 2a) of

this lemma, we have y = w0, i.e., w0 ∈ W
1,p

0 (Ω) ∩ W
1,r
0 (Ω). We can see that μ also belongs to W

1− 1
q
,q

(Γ ). Then

there exists θ ∈ W
1,q

0 (Ω) such that �θ = 0 in Ω and θ = μ on Γ . Then, θ − w0 ∈ Ar,q(Ω). From the case 1),

there exists a constant α such that θ − w0 = α(λ − 1) and we deduce that w0 ∈ W
1,q

0 (Ω). Consequently, the function

w ∈ W
1,q

0 (Ω) and since w = c on Γ and from the characterization of Aq(Ω), we can immediately deduce that w = cλ

and z = c(λ − 1) in Ω .
3) The case p = n

n−1 : Finally, let ϕ ∈ D(Rn) satisfying
∫

Rn ϕ = 1 and μ = E ∗ ϕ. We know that μ ∈ Ln,∞(Rn) ∩
Lr(Rn) for any r > n and ∇μ ∈ Ln/(n−1),∞(Rn) ∩ Ls(Rn) for any s > n

n−1 . The reasoning applies by replacing δ by
ϕ and E by μ.
B. If n = 2: We know that there exists a unique w0 ∈ W

1,p

0 (R2) satisfying �w0 = h − 〈h,1〉
W

−1,p
0 (R2)×W

1,p′
0 (R2)

�u0

in R
2, where u0 is defined by (3). Now we set w = w0 +〈h,1〉

W
−1,p
0 (R2)×W

1,p′
0 (R2)

u0. Then �w = h in R
2 and w− z̃ is

harmonic. Proceeding as in the case A2 by distinguishing 2 cases q � 2 and q > 2, we can prove that Ap,q(Ω) = {0} if
q � 2 and Ap,q(Ω) = {c(μ−u0); c ∈ R} if q > 2 where μ ∈ ⋂

r>2 W
1,r
0 (Ω) is the unique solution of the problem (5).

The proof is finished. �
We complete this Note by a similar result for the three-dimensional Oseen equations with an analogous proof.

Theorem 2.2. Let 1 < p < q < ∞ and Ω ⊂ R
3 be an exterior domain with C1,1 boundary.

(i) If q < 4, then N p,q(Ω) = {(0,0)}.
(ii) If q � 4, then N p,q(Ω) = {(λc − c,μc); c ∈ R

3} where (λc,μc) is the unique solution of the following system

−�λc + ∂λc

∂x1
+ ∇μc = 0, divλc = 0 in Ω, λc = c on Γ,

such that λc ∈ ⋂
r>4/3 X1,r

0 (Ω) and μc ∈ ⋂
r>3/2 Lr(Ω). Moreover, we have λc ∈ Ls(Ω) ∩ L∞(Ω) for all s > 2.

Here, the kernel N p,q(Ω) of the exterior Oseen system is defined by

N p,q(Ω) = {
(u,π) ∈ [

X1,p

0 (Ω) + X1,q

0 (Ω)
] × [

Lp(Ω) + Lq(Ω)
]
,T(u,π) = (0,0) in Ω, u = 0 on Γ

}
with 1 < p < q < ∞. Besides, X1,p

0 (Ω) and T(u,π) are defined as follows

X1,p

0 (Ω) =
⎧⎨
⎩

u ∈ W1,p

0 (Ω) ∩ L4p/(4−p)(Ω) and ∂u
∂x1

∈ W−1,p

0 (Ω) if 1 < p < 4,

u ∈ W1,p

0 (Ω) and ∂u
∂x1

∈ W−1,p

0 (Ω) if p � 4,

T(u,π) =
(

−�u + ∂u

∂x1
+ ∇π,−divu

)
.
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