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Abstract

We study the existence of (distribution/viscosity) solutions of a singular parabolic/Hamilton–Jacobi coupled system. Our moti-
vation stems from the study of the dynamics of dislocation densities in a crystal of finite size. The method of the proof consists in
considering a parabolic regularization of the system, and then passing to the limit after obtaining some uniform bounds using in
particular an entropy estimate for the densities. To cite this article: H. Ibrahim et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Existence globale de solutions pour un système couplé parabolique/Hamilton–Jacobi singulier avec condition de Diri-
chlet. Nous étudions l’existence de solutions mixtes (distribution/viscosité) pour un système couplé parabolique/Hamilton–Jacobi
posé sur un interval. Notre motivation vient de l’étude de la dynamique de densités de dislocations dans un cristal de taille finie.
L’idée de la preuve consiste à considérer une régularisation parabolique appropriée, et ensuite à passer à la limite en utilisant en
particulier une estimation entropique pour les densités. Pour citer cet article : H. Ibrahim et al., C. R. Acad. Sci. Paris, Ser. I 346
(2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Pour tout temps T > 0, et l’interval spatial I = (−1,1), nous étudions le système parabolique/Hamilton–Jacobi
suivant :{

κtκx = ρtρx sur IT := I × (0, T ),

ρt = ρxx − τκx sur IT ,

qui est une version intégrée du modèle de Groma, Czikor et Zaiser [4] décrivant la dynamique de densités de disloca-
tions dans un cristal. Les solutions physiquement acceptables, correspondant à des densités positives de dislocations,
sont celles vérifiant
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κx � |ρx | dans D′(IT ).

Notre résultat principal est :

Théorème 1 (Existence globale). Soit (ρ0, κ0) une donnée initiale sur I satisfaisant (4), (5). Alors il existe une
fonction (ρ, κ) telle que pour tout T > 0, (ρ, κ) ∈ (C(IT ))2 avec ρ ∈ C(IT ), solution de (1), (6), avec les conditions
initiales (2), et les conditions de Dirichlet au bord (3).

L’idée de la preuve du Théorème 1 consiste à considérer une régularization parabolique (8) du système (1), en
ajoutant une petite viscosité ε > 0. Nous prouvons alors l’existence globale (Théorème 1.3) d’une solution au niveau
ε, puis passons à la limite quand ε tend vers zéro.

1. Introduction and main results

Motivated by the study of the elastoviscoplastic properties of crystals, Groma, Czikor and Zaiser [4] have proposed
a model describing the dynamics of dislocation densities. Dislocations are defects in a crystal structure that move when
submitted to an exterior applied stress. We consider a one dimensional framework where the crystal is modelized by
the interval I := (−1,1), and we consider two types of dislocation defects: the positive and negative ones (according to
their Burgers vector, see [5]). Let θ+ and θ− represent the density of the positive and negative dislocations respectively.
Indeed, we will work with the primitives (up to a constant):

ρ±
x = θ±, ρ = ρ+ − ρ− and κ = ρ+ + ρ−.

For a given time T > 0, and τ ∈ R, a constant applied stress, we consider an integrated form of the model described
in [4], namely:{

κtκx = ρtρx on IT := I × (0, T ),

ρt = ρxx − τκx on IT ,
(1)

with initial and boundary conditions

ρ(x,0) = ρ0(x), κ(x,0) = κ0(x), ∀x ∈ I, (2)

ρ(±1, t) = 0 and κ(±1, t) = ±1, ∀t ∈ (0, T ). (3)

The non-negativity of the densities θ+ and θ− at the initial time is interpreted in terms of the unknowns ρ0 and κ0 by:

κ0
x �

∣∣ρ0
x

∣∣ on I. (4)

Denote for s, r ∈ N, Dr
t D

s
xu = ∂s+ru

∂tr ∂xs , and denote by ∂I the boundary of I , IT the closure of IT , and by D′(IT ) the
space of distributions over IT . We now introduce the notion of viscosity solution:

Definition 1.1 (Viscosity solution). Assume ρ ∈ C1(IT ). A function κ ∈ C(IT ) such that x �→ κ(x, t) is non-
decreasing, is called a viscosity solution of the first equation of (1) if it satisfies ∀φ ∈ C1(IT ):

(i) for any local maximum X0 = (x0, t0) ∈ IT of κ − φ, we have: φt (X0)φx(X0) � ρt (X0)ρx(X0),
(ii) for any local minimum X0 = (x0, t0) ∈ IT of κ − φ, we have: φt (X0)φx(X0) � ρt (X0)ρx(X0).

The main result of this Note is the following:

Theorem 1.2 (Global existence of a mixed solution). Let ρ0, κ0 ∈ C∞(Ī ) satisfying (4) and

Dxρ
0,Dxκ

0 ∈ C∞
0 (I ). (5)

Then there exists (ρ, κ) such that for every T > 0, (ρ, κ) ∈ (C(IT ))2 with ρ ∈ C1(IT ), is a solution of (1), (2) and (3).
Moreover, this solution satisfies:

κx � |ρx | on D′(IT ). (6)

However, the solution has to be interpreted in the following sense:
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(i) κ is a viscosity solution of κtκx = ρtρx in IT ,
(ii) ρ is a distributional solution of ρt = ρxx − τκx in IT ,

(iii) the initial and the boundary conditions are satisfied pointwisely.

The principal difficulty we have to face is to deal with the first equation of (1), that we can formally rewrite as
κt = ρtρx/κx which is singular as κx vanishes. The idea is to pass to the limit as ε → 0 in the family of solutions
(ρε, κε), ε > 0, of the particular1 parabolic regularization of (1), namely:⎧⎨

⎩
κε
t = εκε

xx + ρε
xρ

ε
xx

κε
x

− τρε
x on IT ,

ρε
t = (1 + ε)ρε

xx − τκε
x on IT ,

(8)

with some initial data and the same boundary conditions

ρε(x,0) = ρε,0(x), κε(x,0) = κε,0(x), ∀x ∈ I, (9)

ρε(±1, t) = 0 and κε(±1, t) = ±1, ∀t ∈ (0, T ). (10)

Concerning system (8), (9) and (10) we have the following global existence and uniqueness result:

Theorem 1.3 (Global existence of smooth solutions for the regularized system, [6]). Let ρε,0, κε,0 ∈ C∞(Ī ) satisfying
the compatibility conditions:

(1 + ε)ρε,0
xx = τκε,0

x and (1 + ε)κε,0
xx = τρε,0

x on ∂I, (11)

and

κε,0
x >

∣∣ρε,0
x

∣∣ on Ī . (12)

Then there exists (ρε, κε) ∈ (C∞(Ī × (0,∞)))2 unique solution of (8), (9) and (10) for T = ∞, satisfying for r, s ∈ N:
(
Dr

t D
s
xρ

ε,Dr
t D

s
xκ

ε
) ∈ (

C
(
Ī × [0,∞)

))2
, 2r + s � 3 (13)

and

κε
x >

∣∣ρε
x

∣∣ on Ī × [0,∞). (14)

The boundary conditions (11) that we have imposed on the initial data of the regularized system are natural here.
In fact, assume ρε and κε are sufficiently regular solutions of (8), (9) and (10). From (10), we know that ρε and κε are
constants on ∂I × (0, T ) and therefore ρε

t = κε
t = 0 on ∂I × (0, T ) which, using (8) at time t = 0, immediately implies

(11). The compatibility conditions (11), joint with the Hölder theory for parabolic equations imply the regularity (13).
To do the proof of Theorem 1.2, we will apply Theorem 1.3 with initial conditions ρε,0, κε,0 constructed from

ρ0, κ0. In fact, condition (5) is a sufficient technical condition to insure (11) and (12) for instance, with the special

choice: ρε,0(x) = ρ0(x)+ετψ(x)

(1+ε)2 , κε,0(x) = κ0(x)+εx
1+ε

, with ψ(x) = 1
4τ 2 [1 − cos τ(x2 − 1)] when τ �= 0.

2. Sketch of the proof of Theorem 1.2

We need a framework where system (1) is stable under approximation. Roughly speaking, the C1 regularity of ρ

that appears in Theorem 1.2 is expected since it satisfies a parabolic equation (the second equation of (1)). In this case,
considering the first equation of (1), we see that the right-hand side ρtρx is continuous and hence, assuming κx � 0,
we can interpret κ as a viscosity solution. This takes us in a natural way to the framework of viscosity solutions where

1 This comes from the natural parabolic regularization for the system satisfied by θ± , which is:

θ
±,ε
t = εθ

±,ε
xx ±

((
θ
+,ε
x − θ

−,ε
x

θ+,ε + θ−,ε
− τ

)
θ±,ε

)
x

with θ±,ε = κε
x ± ρε

x

2
. (7)
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the stability property is well satisfied (see [1, Lemma 2.3]). We want to show (as ε goes to zero) that (ρε, κε) → (ρ, κ)

in (L∞
loc(IT ))2, ρε

x → ρx in L∞
loc(IT ), and ρε

t → ρt in D′(IT ) with ρt ∈ C(IT ).
Step 1. (Convergence of κε). Writing down the entropy associated to system (7)

Sε(t) =
∫
I

∑
±

θ±,ε(x, t) log θ±,ε(x, t)dx,

we show that Sε(t) � C(T ) for t ∈ [0, T ], which implies that
∫
I
κε
x logκε

x � C1(T ), which gives the ε-uniform con-
trol of the modulus of continuity of κε with respect to the variable x. On the other hand, remark that κε satisfies
κε
t − εκε

xx = f ε where we will show that f ε is ε-uniformly bounded. Then it is possible to deduce locally the

ε-uniform control of the modulus of continuity of κε with respect to the variable t . Indeed, we have f ε = ρε
x

κε
x
Aε

x

with Aε = ρε
x − τκε satisfying Aε

t = (1+ ε)Aε
xx + τρε

x

κε
x

Aε
x . Hence, using interior estimates for parabolic equations (see

[7, Proposition 7.1]), we obtain

Aε → A and Aε
x → Ax in L∞

loc, (15)

and joint to (14), we conclude that f ε is ε-uniformly bounded. Finally, using the fact that ‖κε‖L∞(IT ) � 1, the con-
vergence of κε directly follows by Arzela–Ascoli Theorem.

Step 2. (Convergence of ρε , ρε
x and ρε

t ). Using similar arguments as in Step 1, particularly (14), and the fact that
ρε

t − ερε
xx = Aε

x , we deduce that ρε → ρ in L∞
loc(IT ). However, since ρε satisfies a linear parabolic equation (the

second equation of (8)), we can write ρε
x = τκε + Aε , and ρε

t = ερε
xx + Aε

x , therefore using (15), we deduce, with
ρt = Ax ∈ C(IT ), that ρε

x → ρx in L∞
loc(IT ), and ρε

t → ρt = Ax in D′(IT ).
Step 3. (Passing to the limit and boundary conditions). We rewrite system (8) in terms of Aε , we get:{

κε
t κε

x = εκε
xκε

xx + ρε
xA

ε
x on IT ,

ρε
t = ερε

xx + Aε
x on IT .

Using Steps 1 and 2, we can pass to the limit in the above system, using in particular the stability property for viscosity
solutions in order to pass to the limit in the first equation. Our result then directly follows. The only thing left is to
recover the boundary conditions. This is made by the equicontinuity of ρε and κε with respect to x near ∂I × [0, T ],
and the equicontinuity of ρε and κε with respect to t near I × {t = 0}.

3. Sketch of the proof of Theorem 1.3

Step 1. (A lower bound on κε
x ). We have the following comparison principle for system (8) (which gives a stronger

version than inequality (6) for system (1)).

Proposition 3.1 (A comparison principle for system (8)). Let (ρε, κε) be the solution given by Theorem 1.3. Choose
β = β(ε, τ ) > 0 large enough. Let M(x, t) := cosh(βx){κε

x (x, t) − √
γ 2(t) + (ρε

x(x, t))2} for (x, t) ∈ IT , where

γ (0) = γ0
2 for some γ0 ∈ (0,1), with κ

ε,0
x �

√
γ 2

0 + (ρ
ε,0
x )2 on I , and

γ ′

γ
� −(

c0 + ∥∥ρε
xxx(·, t)

∥∥
L∞(I )

)
, c0 = c0(ε,β, τ ). (16)

Then m(t) := minI M(x, t) satisfies m(t) � γ 2(t) for all t ∈ [0, T ]. In particular, we have

κε
x (x, t) �

√
γ 2(t) + (

ρε
x(x, t)

)2
on IT . (17)

The idea of the proof of Proposition 3.1 is to write the partial differential inequality satisfied by M(x, t) derived
from system (8), and to deduce that m(t) satisfies the following ordinary differential inequality in the viscosity sense:

mt � b0m + b1

for some coefficients b0, b1 depending in particular on γ , γ ′ and ρxxx . On the other hand, we can show that
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(
γ 2)

t
� b0γ

2 + b1,

and we conclude by comparison.

Comments on the strategy of the proof of Theorem 1.3. Recall that we work on IT . The term E that will appear
in the sequel may certainly vary from line to line but always has the form E = E(T ) = cecT , c > 0 is a positive
constant independent of time but depending on ε. By applying a fixed point argument, we can show the existence of
a local smooth solution (ρε, κε) of (8), (9) and (10) for T > 0 small enough. This solution satisfies inequality (17) of
Proposition 3.1 which somehow linearizes the first equation of (8) and may leads to a set of a priori estimates on the
solution. We remark form inequality (16) that we need to have a good control on ‖ρε

xxx(·, t)‖L∞(I ) in order to prevent
γ from vanishing at a finite time. Otherwise, we cannot guarantee the long time existence of (ρε, κε). In fact, using
Hölder estimates for parabolic equations [9], we get:

∥∥ρε
xxx(·, t)

∥∥
L∞(I )

� E

γ (t)
, (18)

which, if plugged in (16), does not prevent γ from vanishing, and here is the principal difficulty in treating system (8).
More a priori estimates concerning system (8) can also be obtained, namely for t ∈ (0, T ):

∥∥ρε
xxx

∥∥
BMOp(I×(0,t))

� E and
∥∥ρε

xxx

∥∥
W

2,1
2 (I×(0,t))

� E

γ 4(t)
, (19)

with W
2,1
2 (IT ) = {u ∈ L2(IT ), (ut , ux, uxx) ∈ (L2(IT ))2}, and the parabolic bounded mean oscillation space BMOp

is now recalled.

Definition 3.2 (Parabolic bounded mean oscillation space). A function u ∈ L1
loc(IT ) is said to be of bounded

mean oscillation, u ∈ BMOp(IT ), if the quantity: ‖u‖BMOp(IT ) = supQ⊂IT
( 1
|Q|

∫
Q

|u − mQ(u)|) is finite. Here

Q = Qr(x0, t0) = {(x, t); |x − x0| < r, t0 − r2 < t < t0} with r > 0, and mQ(u) = 1
|Q|

∫
Q

u. The BMOp space is
a Banach space whose elements are defined up to an additive constant.

Step 2. (A parabolic Kozono–Taniuchi inequality). We seek to find an estimate on ‖ρε
xxx(·, t)‖L∞(I ) better than

(18). In fact, the space L∞ lies in between the spaces BMOp and W
2,1
2 , and it seems natural to estimate the L∞ norm

by interpolation between these two spaces. Indeed, this is the goal of the next result.

Proposition 3.3 (A parabolic Kozono–Taniuchi inequality). Let u ∈ W
2,1
2 (IT ), then there exists a constant E such

that, for all t ∈ (0, T ), the following estimate holds (with log+ a = max(0, loga)):

‖u‖L∞(I×(0,t)) � E‖u‖BMOp(I×(0,t))

(
1 + log+ ‖u‖

W
2,1
2 (I×(0,t))

)
. (20)

The proof is an adaptation of the Kozono–Taniuchi inequality which is shown on the whole space R
n in the elliptic

case [8, Theorem 1]. It is worth mentioning that the original type of the logarithmic Sobolev inequality was found in
[2], and [3]. Using inequality (20) together with (19), we obtain:

∥∥ρε
xxx(·, t)

∥∥
L∞(I )

� E

(
1 + log+ E

γ 4(t)

)
. (21)

Step 3. (Long time existence). Using the sharper estimate (21) on ‖ρε
xxx(·, t)‖L∞(I ), we can choose γ solution of

the following ODE:

γ ′

γ
= −E

(
1 + log+ 1

γ

)
,

with some new constant E = E(T ). From Proposition 3.1, we finally deduce that:

κε
x (·, t) � γ (t) � e−eec(t+1)

> 0 for t ∈ [0, T ], (22)
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where c > 0 is a positive constant independent of time. Indeed, the time T being arbitrary, we see that (22) is true for
all time t � 0. From (22), the following a priori estimates on ρε and κε can be obtained:

∥∥Ds
xρ

ε(·, t)∥∥
L∞(I )

� eeec(t+1)

,
∥∥Ds

xκ
ε(·, t)∥∥

L∞(I )
� eeec(t+1)

, ∀s ∈ N, s � 3, ∀t � 0. (23)

The above a priori estimates (22) and (23) permit to show the long time existence by time iteration.
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