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Abstract

Let A be a matrix whose entries are real i.i.d. centered random variables with unit variance and suitable moment assumptions.
Then the smallest singular value s;,(A) is of order n™ 172 with high probability. The lower estimate of this type was proved recently
by the authors; in this Note we establish the matching upper estimate. To cite this article: M. Rudelson, R. Vershynin, C. R. Acad.
Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

La plus petite valeur singuliére d’une matrice carrée aléatoire est en O(n_l/ 2) Soit A une matrice dont les entrées sont
des variables aléatoires centrées réelles i.i.d. de variance 1 vérifiant une hypothese adéquate de moment. Alors la plus petite valeur
singuliere s, (A) est de ’ordre de n™ 172 avec grande probabilité. La minoration de s, (A) a été récemment obtenue par les auteurs ;
dans cette Note, nous prouvons la majoration. Pour citer cet article : M. Rudelson, R. Vershynin, C. R. Acad. Sci. Paris, Ser. I 346
(2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let A be an n x n matrix whose entries are real i.i.d. centered random variables with suitable moment assumptions.
Random matrix theory studies the distribution of the singular values si(A), which are the eigenvalues of |A| = VA*A
arranged in the non-increasing order. In this paper we study the magnitude of the smallest singular value s, (A), which
can also be viewed as the reciprocal of the spectral norm:

sp(A)=_inf [Axla=1/]A7"], )
x: |lx]l2=1

Motivated by numerical inversion of large matrices, von Neumann and his associates speculated that

sp(A) ~n~1/2  with high probability. )
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(See [4, pp. 14,477, 555].) A more precise form of this estimate was conjectured by Smale and proved by Edelman [1]
for Gaussian matrices A. For general matrices, conjecture (2) had remained open until we proved in [2] the lower
bound s,(A) = £2(n~1/?). In the present paper, we shall prove the corresponding upper bound s,(A) = O(n~1/?),
thereby completing the proof of (2).

Theorem 1.1 (Fourth moment). Let A be an n X n matrix whose entries are i.i.d. centered random variables with
unit variance and fourth moment bounded by B. Then, for every § > 0 there exist K > 0 and ny which depend
(polynomially) only on § and B, and such that

]P’(sn(A) > anl/z) <§ foralln > ny.

Remark. The same result but with the reverse estimate, P(s, (A) < K n=l 2) < 8, was proved in [2]. Together, these
two estimates amount to (2).

Under more restrictive (but still quite general) moment assumptions, Theorem 1.1 takes the following sharper
form. Recall that a random variable & is called subgaussian if its tail is dominated by that of the standard normal
random variable: there exists B > 0 such that P(|§]| > 1) < Zexp(—tz/Bz) for all ¢+ > 0. The minimal B is called the
subgaussian moment of . The class of subgaussian random variables includes, among others, normal, symmetric £1,
and in general all bounded random variables.

Theorem 1.2 (Subgaussian). Let A be an n x n matrix whose entries are i.i.d. centered random variables with unit
variance and subgaussian moment bounded by B. Then for every K > 2 one has

P(s,(A) > Kn™'/?) <(C/K)log K + ", (3)
where C > 0 and c € (0, 1) depend (polynomially) only on B.

Remark. A reverse result was proved in [2]: for every ¢ > 0, one has P(s,(A) < en~ 12y < Ce+¢".

Our argument is an application of the small ball probability bounds and the structure theory developed in [2]
and [3]. We shall give a complete proof of Theorem 1.2 only; we leave to the interested reader to modify the argument
as in [2] to obtain Theorem 1.1.

2. Proof of Theorem 1.2

By (ex);_, we denote the canonical basis of the Euclidean space R" equipped with the canonical inner product
(-, -) and Euclidean norm || - ||l2. By C, Cq, ¢, c1, ... we shall denote positive constants that may possibly depend only
on the subgaussian moment B.

Consider vectors (X;);_, and (X});_, an n-dimensional Hilbert space H. Recall that the system (X, X})}_,
is called a biorthogonal system in H if (Xj.‘, Xi) =0 for all j,k=1,...,n. The system is called complete if
span(Xy) = H. The following notation will be used throughout the paper:

Hy :=span(X;)ixx, Hji:=span(X;)ig(jxy, J.k=1,...,n. @

The next proposition summarizes some elementary and known properties of biorthogonal systems:

Proposition 2.1 (Biorthogonal systems). 1. Let A be an n X n invertible matrix with columns Xy = Aer, k=1, ...,n.
Define X} = (A~ Y*ey. Then (Xy, X})i—, is a complete biorthogonal system in R".

2. Let (Xy);_, be a linearly independent system in an n-dimensional Hilbert space H. Then there exist unique
vectors (X;)y_, such that (Xy, X;)y_, is a biorthogonal system in H. This system is complete.

3. Let (Xk, X{)i_, be a complete biorthogonal system in a Hilbert space H. Then || X} |2 = 1/ dist(Xy, H) for
k=1,...,n.

Without loss of generality, we can assume that n > 2 and that A is a.s. invertible (by adding independent normal
random variables with small variance to all entries of A).
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Let u, v > 0. By (1), the following implication holds:

Ix eR™ |xlo<u, A x|, >vn'? implies s,(A) < (u/v)n~ /2. (5)

We will now describe how to find such x. Consider the columns X; = Aey of A and the subspaces Hy, Hj  defined
in (4). Let P; denote the orthogonal projection in R” onto Hj. We define the vector

x:=X1— P X;.
Define X} = (A~1Y*er. By Proposition 2.1 (X, X})i—, is a complete biorthogonal system in R", so
ker(Py) = span(X7). (6)
Clearly, ||x||2 = dist(X1, H;). Conditioning on H; and using a standard concentration bound, we obtain
P(llxll2 > u) < Ce ™, u>0. 7

This settles the first bound in (5) with high probability.
To address the second bound in (5), we write A~ lx = A~!1X; — A~'P; X, =e¢; — A~ P X;. Since P, X, € Hj,

the vector A~ Py X is supported in {2, ..., n} and hence is orthogonal to e;. Therefore
n n n
[~y > A~ Pxi =Y (AT Py e = 3 (P (A7) e X0 = 3Pk xa)
k=1 k=1 k=1

The first term of the last sum is zero since P} X = 0 by (6). We have proved that

n
A7) > ST(YE X1, where Y= PIX} € Hi, k=2.....n. ®)
k=2

Lemma 2.1. (Y}, Xy)}_, is a complete biorthogonal system in H.

Proof. By (8) and (6), Y — X} € ker(P)) = span(X7), so Y = X' — A, X| for some Ay e Rand all k =2,...,n.
By the orthogonality of X} to all of X;, k=2, ..., n, we have (Y;.", Xi) = (X;f, Xy) =0 forall j,k=2,...,n. The
biorthogonality is proved. The completeness follows since dim(H;) =n—1. O

In view of the uniqueness in Part 2 of Proposition 2.1, Lemma 2.1 has the following crucial consequence:

Corollary 2.2. The system of vectors (Y[});_, is uniquely determined by the system (Xy);_,. In particular, the system
(Y{)}_, and the vector X are statistically independent.

By Part 3 of Proposition 2.1, [|Y}|l2 = 1/ dist(X, Hy x). We have therefore proved that

n Y*
JA™'x])5 = > (@ /b0, Whereak='< k x1>, by = dist(Xx, Hi ). 9)

* ’
P 1712

We will now need to bound a; above and by below. Without loss of generality, we will do this for k = 2.

We are going to use a result of [3] that states that random subspaces have no additive structure. The amount of
structure is formalized by the concept of the least common denominator. Given parameters & > 0 and y € (0, 1), the
least common denominator of a vector a € R" is defined as

LCDq, (a) := inf{6 > 0: dist(0a, ZN) < min(y [|0all2, @)}.

The least common denominator of a subspace H in R” is then defined as
LCDq,, (H) = inf{LCDy,y (a): a € H, |lall, =1}.

Since Hj 2 is the span of n — 2 random vectors with i.i.d. coordinates, Theorem 4.3 of [3] yields that
P{LCDq.c((H12)") > e} > 1 —e "

where o = c4/n, and ¢ > 0 is some constant that may only depend on the subgaussian moment B.
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On the other hand, note that the random vector X3, is statistically independent of the subspace H ». So, conditioning
on Hj > and using the standard concentration inequality, we obtain

P(by = dist(X2, Hi ) >1) <Ce™, >0,
Therefore, the event
£ :={LCDyc((H12)") > e, by <t} satisfies P(€)>1—e " —Ce " (10)
Note that the event £ depends only on (Xj);?zz. So let us fix a realization of (X’j)7:2 for which £ holds. By
Corollary 2.2, the vector Y} is now fixed. By Lemma 2.1, Y7 is orthogonal to (Xj);'.=3. Therefore Y* := Y5 /| Y ]l2 €
(Hl,z)l, and because event £ holds, we have
LCDO,,C(Y*) >e™.

Let us write in coordinates a» = [(Y*, X1)| = | Y/, Y*(i) X1 (/)| and recall that Y*(i) are fixed coefficients with
> Y*(i)? =1, and X1 (i) are i.i.d. random variables. We can now apply Small Ball Probability Theorem 3.3 of [3]
(in dimension m = 1) for this random sum. It yields

Py, (a2 < &) < C(s 4 1/LCDq o (Y*) +e79") < C(e +e7"). (11)

Here the subscript in Py, means that we the probability is with respect to the random variable X while the other
random variables (X j);f:z are fixed; we will use similar notations later.
Now we unfix all random vectors, i.e. work with P =Py,  x,. We have

,,,,,

Play <ecorby >1)=Ey, . x,Px,(@a<eorby >1) <Ey,, . x,1cPx, (a2 <¢) +Px, . x,(E)

.....

because by <t on £. By (11) and (10), we continue as
Pla<eorby>1) < Cle+e ")+ (e + Ce_”z) =C(e+ eo’ 4 e™") == p(e,t,n).
Repeating the above argument for any k € {2, ..., n} instead of k = 2, we conclude that
Par /by <e/t) < p(e,t,n) fore>0,1r>0, k=2,...,n. (12)

From this we can easily deduce the lower bound on the sum of (aj /bi)?, which we need for (9). This can be done
using the following elementary observation proved by applying Markov’s inequality twice.

Proposition 2.2. Let Z; >0, k =1, ..., n, be random variables. Then, for every ¢ > 0, we have
1 n 2 n
Pl — Zr<e)l < - P(Z; < 2¢).
ORERERIEE

We use Proposition 2.2 for Z; = (ax /bk)z, along with the bounds (12). In view of (9), we obtain
P(|A™ x|, < (e/0)n'/?) < 2p(de,t,n). (13)
Estimates (7) and (13) settle the desired bounds in (5), and therefore we conclude that

P(s0(A) < (ut/e)n ™) 2 P(Ixll2 <u, | A~ x|, = (e/0n"/?) > 1~ Ce™ —2p(de. 1,n).

This estimate is valid for all ¢, u, > 0. Choosing ¢ = 1/K, u =t = y/log K, the proof of Theorem 1.2 is complete.
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