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The least singular value of a random square matrix is O(n−1/2)
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Abstract

Let A be a matrix whose entries are real i.i.d. centered random variables with unit variance and suitable moment assumptions.
Then the smallest singular value sn(A) is of order n−1/2 with high probability. The lower estimate of this type was proved recently
by the authors; in this Note we establish the matching upper estimate. To cite this article: M. Rudelson, R. Vershynin, C. R. Acad.
Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

La plus petite valeur singulière d’une matrice carrée aléatoire est en O(n−1/2) Soit A une matrice dont les entrées sont
des variables aléatoires centrées réelles i.i.d. de variance 1 vérifiant une hypothèse adéquate de moment. Alors la plus petite valeur
singulière sn(A) est de l’ordre de n−1/2 avec grande probabilité. La minoration de sn(A) a été récemment obtenue par les auteurs ;
dans cette Note, nous prouvons la majoration. Pour citer cet article : M. Rudelson, R. Vershynin, C. R. Acad. Sci. Paris, Ser. I 346
(2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let A be an n×n matrix whose entries are real i.i.d. centered random variables with suitable moment assumptions.
Random matrix theory studies the distribution of the singular values sk(A), which are the eigenvalues of |A| = √

A∗A
arranged in the non-increasing order. In this paper we study the magnitude of the smallest singular value sn(A), which
can also be viewed as the reciprocal of the spectral norm:

sn(A) = inf
x: ‖x‖2=1

‖Ax‖2 = 1/
∥∥A−1

∥∥. (1)

Motivated by numerical inversion of large matrices, von Neumann and his associates speculated that

sn(A) ∼ n−1/2 with high probability. (2)
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(See [4, pp. 14, 477, 555].) A more precise form of this estimate was conjectured by Smale and proved by Edelman [1]
for Gaussian matrices A. For general matrices, conjecture (2) had remained open until we proved in [2] the lower
bound sn(A) = Ω(n−1/2). In the present paper, we shall prove the corresponding upper bound sn(A) = O(n−1/2),
thereby completing the proof of (2).

Theorem 1.1 (Fourth moment). Let A be an n × n matrix whose entries are i.i.d. centered random variables with
unit variance and fourth moment bounded by B . Then, for every δ > 0 there exist K > 0 and n0 which depend
(polynomially) only on δ and B , and such that

P
(
sn(A) > Kn−1/2) � δ for all n � n0.

Remark. The same result but with the reverse estimate, P(sn(A) < Kn−1/2) � δ, was proved in [2]. Together, these
two estimates amount to (2).

Under more restrictive (but still quite general) moment assumptions, Theorem 1.1 takes the following sharper
form. Recall that a random variable ξ is called subgaussian if its tail is dominated by that of the standard normal
random variable: there exists B > 0 such that P(|ξ | > t) � 2 exp(−t2/B2) for all t > 0. The minimal B is called the
subgaussian moment of ξ . The class of subgaussian random variables includes, among others, normal, symmetric ±1,
and in general all bounded random variables.

Theorem 1.2 (Subgaussian). Let A be an n × n matrix whose entries are i.i.d. centered random variables with unit
variance and subgaussian moment bounded by B . Then for every K � 2 one has

P
(
sn(A) > Kn−1/2) � (C/K) logK + cn, (3)

where C > 0 and c ∈ (0,1) depend (polynomially) only on B .

Remark. A reverse result was proved in [2]: for every ε � 0, one has P(sn(A) � εn−1/2) � Cε + cn.

Our argument is an application of the small ball probability bounds and the structure theory developed in [2]
and [3]. We shall give a complete proof of Theorem 1.2 only; we leave to the interested reader to modify the argument
as in [2] to obtain Theorem 1.1.

2. Proof of Theorem 1.2

By (ek)
n
k=1 we denote the canonical basis of the Euclidean space R

n equipped with the canonical inner product
〈·, ·〉 and Euclidean norm ‖ · ‖2. By C,C1, c, c1, . . . we shall denote positive constants that may possibly depend only
on the subgaussian moment B .

Consider vectors (Xk)
n
k=1 and (X∗

k )
n
k=1 an n-dimensional Hilbert space H . Recall that the system (Xk,X

∗
k )

n
k=1

is called a biorthogonal system in H if 〈X∗
j ,Xk〉 = δj,k for all j, k = 1, . . . , n. The system is called complete if

span(Xk) = H . The following notation will be used throughout the paper:

Hk := span(Xi)i 	=k, Hj,k := span(Xi)i /∈{j,k}, j, k = 1, . . . , n. (4)

The next proposition summarizes some elementary and known properties of biorthogonal systems:

Proposition 2.1 (Biorthogonal systems). 1. Let A be an n×n invertible matrix with columns Xk = Aek , k = 1, . . . , n.
Define X∗

k = (A−1)∗ek . Then (Xk,X
∗
k )

n
k=1 is a complete biorthogonal system in R

n.
2. Let (Xk)

n
k=1 be a linearly independent system in an n-dimensional Hilbert space H . Then there exist unique

vectors (X∗
k )

n
k=1 such that (Xk,X

∗
k )

n
k=1 is a biorthogonal system in H . This system is complete.

3. Let (Xk,X
∗
k )

n
k=1 be a complete biorthogonal system in a Hilbert space H . Then ‖X∗

k‖2 = 1/dist(Xk,Hk) for
k = 1, . . . , n.

Without loss of generality, we can assume that n � 2 and that A is a.s. invertible (by adding independent normal
random variables with small variance to all entries of A).
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Let u,v > 0. By (1), the following implication holds:

∃x ∈ R
n: ‖x‖2 � u,

∥∥A−1x
∥∥

2 � vn1/2 implies sn(A) � (u/v)n−1/2. (5)

We will now describe how to find such x. Consider the columns Xk = Aek of A and the subspaces Hk , Hj,k defined
in (4). Let P1 denote the orthogonal projection in R

n onto H1. We define the vector

x := X1 − P1X1.

Define X∗
k = (A−1)∗ek . By Proposition 2.1 (Xk,X

∗
k )

n
k=1 is a complete biorthogonal system in R

n, so

ker(P1) = span
(
X∗

1

)
. (6)

Clearly, ‖x‖2 = dist(X1,H1). Conditioning on H1 and using a standard concentration bound, we obtain

P
(‖x‖2 > u

)
� Ce−cu2

, u > 0. (7)

This settles the first bound in (5) with high probability.
To address the second bound in (5), we write A−1x = A−1X1 − A−1P1X1 = e1 − A−1P1X1. Since P1X1 ∈ H1,

the vector A−1P1X1 is supported in {2, . . . , n} and hence is orthogonal to e1. Therefore

∥∥A−1x
∥∥2

2 >
∥∥A−1P1X1

∥∥2
2 =

n∑
k=1

〈
A−1P1X1, ek

〉2 =
n∑

k=1

〈
P1

(
A−1)∗

ek,X1
〉2 =

n∑
k=1

〈
P1X

∗
k ,X1

〉2
.

The first term of the last sum is zero since P1X
∗
1 = 0 by (6). We have proved that

∥∥A−1x
∥∥2

2 �
n∑

k=2

〈
Y ∗

k ,X1
〉2

, where Y ∗
k := P1X

∗
k ∈ H1, k = 2, . . . , n. (8)

Lemma 2.1. (Y ∗
k ,Xk)

n
k=2 is a complete biorthogonal system in H1.

Proof. By (8) and (6), Y ∗
k − X∗

k ∈ ker(P1) = span(X∗
1), so Y ∗

k = X∗
k − λkX

∗
1 for some λk ∈ R and all k = 2, . . . , n.

By the orthogonality of X∗
1 to all of Xk , k = 2, . . . , n, we have 〈Y ∗

j ,Xk〉 = 〈X∗
j ,Xk〉 = δj,k for all j, k = 2, . . . , n. The

biorthogonality is proved. The completeness follows since dim(H1) = n − 1. �
In view of the uniqueness in Part 2 of Proposition 2.1, Lemma 2.1 has the following crucial consequence:

Corollary 2.2. The system of vectors (Y ∗
k )nk=2 is uniquely determined by the system (Xk)

n
k=2. In particular, the system

(Y ∗
k )nk=2 and the vector X1 are statistically independent.

By Part 3 of Proposition 2.1, ‖Y ∗
k ‖2 = 1/dist(Xk,H1,k). We have therefore proved that

∥∥A−1x
∥∥2

2 �
n∑

k=2

(ak/bk)
2, where ak =

∣∣∣∣
〈

Y ∗
k

‖Y ∗
k ‖2

,X1

〉∣∣∣∣, bk = dist(Xk,H1,k). (9)

We will now need to bound ak above and bk below. Without loss of generality, we will do this for k = 2.
We are going to use a result of [3] that states that random subspaces have no additive structure. The amount of

structure is formalized by the concept of the least common denominator. Given parameters α > 0 and γ ∈ (0,1), the
least common denominator of a vector a ∈ R

n is defined as

LCDα,γ (a) := inf
{
θ > 0: dist

(
θa,Z

N
)
< min

(
γ ‖θa‖2, α

)}
.

The least common denominator of a subspace H in R
n is then defined as

LCDα,γ (H) = inf
{
LCDα,γ (a): a ∈ H, ‖a‖2 = 1

}
.

Since H1,2 is the span of n − 2 random vectors with i.i.d. coordinates, Theorem 4.3 of [3] yields that

P
{
LCDα,c

(
(H1,2)

⊥)
� ecn

}
� 1 − e−cn

where α = c
√

n, and c > 0 is some constant that may only depend on the subgaussian moment B .
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On the other hand, note that the random vector X2 is statistically independent of the subspace H1,2. So, conditioning
on H1,2 and using the standard concentration inequality, we obtain

P
(
b2 = dist(X2,H1,2) � t

)
� Ce−ct2

, t > 0.

Therefore, the event

E := {
LCDα,c

(
(H1,2)

⊥)
� ecn, b2 < t

}
satisfies P(E) � 1 − e−cn − Ce−ct2

. (10)

Note that the event E depends only on (Xj )
n
j=2. So let us fix a realization of (Xj )

n
j=2 for which E holds. By

Corollary 2.2, the vector Y ∗
2 is now fixed. By Lemma 2.1, Y ∗

2 is orthogonal to (Xj )
n
j=3. Therefore Y ∗ := Y ∗

2 /‖Y ∗
2 ‖2 ∈

(H1,2)
⊥, and because event E holds, we have

LCDα,c

(
Y ∗) � ecn.

Let us write in coordinates a2 = |〈Y ∗,X1〉| = |∑n
i=1 Y ∗(i)X1(i)| and recall that Y ∗(i) are fixed coefficients with∑n

i=1 Y ∗(i)2 = 1, and X1(i) are i.i.d. random variables. We can now apply Small Ball Probability Theorem 3.3 of [3]
(in dimension m = 1) for this random sum. It yields

PX1(a2 � ε) � C
(
ε + 1/LCDα,c

(
Y ∗) + e−c1n

)
� C

(
ε + e−c2n

)
. (11)

Here the subscript in PX1 means that we the probability is with respect to the random variable X1 while the other
random variables (Xj )

n
j=2 are fixed; we will use similar notations later.

Now we unfix all random vectors, i.e. work with P = PX1,...,Xn . We have

P(a2 � ε or b2 � t) = EX2,...,XnPX1(a2 � ε or b2 � t) � EX2,...,Xn1EPX1(a2 � ε) + PX2,...,Xn

(
Ec

)
because b2 < t on E . By (11) and (10), we continue as

P(a2 � ε or b2 � t) � C
(
ε + e−c2n

) + (
e−cn + Ce−ct2) = C1

(
ε + e−c3t

2 + e−cn
) := p(ε, t, n).

Repeating the above argument for any k ∈ {2, . . . , n} instead of k = 2, we conclude that

P(ak/bk � ε/t) � p(ε, t, n) for ε > 0, t > 0, k = 2, . . . , n. (12)

From this we can easily deduce the lower bound on the sum of (ak/bk)
2, which we need for (9). This can be done

using the following elementary observation proved by applying Markov’s inequality twice.

Proposition 2.2. Let Zk � 0, k = 1, . . . , n, be random variables. Then, for every ε > 0, we have

P

(
1

n

n∑
k=1

Zk � ε

)
� 2

n

n∑
k=1

P(Zk � 2ε).

We use Proposition 2.2 for Zk = (ak/bk)
2, along with the bounds (12). In view of (9), we obtain

P
(∥∥A−1x

∥∥
2 � (ε/t)n1/2) � 2p(4ε, t, n). (13)

Estimates (7) and (13) settle the desired bounds in (5), and therefore we conclude that

P
(
sn(A) � (ut/ε)n−1/2) � P

(‖x‖2 � u,
∥∥A−1x

∥∥
2 � (ε/t)n1/2) � 1 − Ce−cu2 − 2p(4ε, t, n).

This estimate is valid for all ε,u, t > 0. Choosing ε = 1/K , u = t = √
logK , the proof of Theorem 1.2 is complete.
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