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Abstract

We consider elliptic problems in periodically perforated domains in RV, with nonhomogeneous Neumann conditions on the
boundary of the holes. We are interested in the asymptotic behavior of the solutions as the period & goes to zero. In a first case
all the holes are “small”, i.e., are of size r(¢) with r(¢)/e — 0. In the second case, there are again small holes but also holes
of size . We use the periodic unfolding method introduced in Cioranescu et al. (2002), which allows us to study second order
operators with highly oscillating coefficients and so, to generalize here the results of Conca and Donato (1988). In both cases,
if r(¢) = exp(N/N — 1), an additional term appears in the right-hand side of the limit equation. To cite this article: A. Ould
Hammouda, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

Eclatement périodique et probléemes de Neumann non homogénes dans des domaines a petits trous. L’objet de cette Note
est I’homogénéisation d’une classe de problémes élliptiques dans des domaines de RV, périodiquement perforés par des petits
trous, avec des conditions de Neumann non homogenes sur le bord des trous. Dans un premier temps, les trous de taille r(¢) avec
r(e)/e — 0 et dans un second, on a des trous de taille r(¢) mais aussi des trous de taille €. Le premier cas, pour le Laplacien, a
été étudié dans Conca et Donato (1988). Pour étudier le comportement asymptotique des solutions lorsque ¢ — 0, on utilise ici la
méthode de 1’éclatement périodique introduite par Cioranescu et al. (2002), ce qui permet de considérer des opérateurs de second
ordre a coefficients oscillants. Dans les deux situations, pour r(e) = exp(N/N — 1), on a un terme supplémentaire qui apparait
dans le second membre de 1’équation limite. Pour citer cet article : A. Ould Hammouda, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Version francaise abrégée

Nous adaptons ici, la méthode de I’éclatement périodique introduite dans [2], a une classe de problemes élliptiques
posés sur des domaines de RY, périodiquement perforés par des petits trous, avec des conditions de Neumann non
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homogenes sur le bord des trous. La méthode (voir [2]), utilise un opérateur d’éclatement périodique et une décom-
position macro-micro des fonctions, séparant les échelles.

Soit £2 un domaine borné de RN, N > 3 tel que |9£2| =0 et ¥ = [0, 1["V la cellule de référence. Pour définir
le domaine perforé £2, 5, de frontiére 982, 5 lipschitzienne, on introduit les ensembles suivants : B et T sont deux
compactsde Y tel que @, = {k = (k1, ka, ..., kp): (€Y +ek)N2 £ @} ;Y = Uke(_)a{e(Y—i—k)} ; Bes = Uke(,—)g{sSB—i—
ek} ; et £2.5 = 2 \ Bgs. La principale caracteristique de £2,.5 est que la dimension des trous n’est pas nécessairement

proportionnelle i celle de la cellule Y. Enfin, soit Ys = Y \ 8B ; de plus, on pose 6 = |Y|\T|T|

1. Perforated domains

The periodic unfolding method was introduced in [2] by Cioranescu, Damlamian and Griso for the study of periodic
homogenization in the case of fixed domains. It is based on two ingredients: the unfolding operator and a macro-micro
decomposition of functions, allowing to separate the macroscopic and microscopic scales. This method, being a fixed-
domains one, no extension operator is needed and avoids any construction of special test functions. Consequently, we
can consider a larger class of geometrical situations than in [1,3,5]. We use this method here in order to treat elliptic
problems in domains with small holes and nonhomogeneous Neumann conditions on the boundary of the holes.

In the sequel, € and § are two small parameters going to zero. We start by defining two perforated domains, £2,5 and
£2%,. To do so, let £2 be a bounded domain in RN, (N >3) such that [352| =0 and let ¥ = [0, 1[V be the reference
(or periodicity) cell. We introduce the following notation:

Q2. = interior{ U e(& + 17)}, where 5, = {£ € ZV, (¢ +Y) C 2}, (1)
§ele
and set A, = 2\ Qs. The set S}g is the largest finite union of €Y cells contained in £2, and A, is the subset of 2
containing the parts from Y cells intersecting 952.

Case 1. Let B be an open set, such that B € Y, this is the hole in Y. Denote Y5 = ¥ \ § B supposed to be connected.
Set

Bes = Ue(‘é“—i—cSB), Qsa={x€9”§}€1’a}, )

Eeqn

where By is the set of e-periodic holes of size €8 in RV, and £2,5 = (RN \ B,s) N £2 is the perforated domain, the
holes being of size £5. We denote by Bé‘(’gt the set of holes in £2 that do not meet the boundary 3£2. In the sequel, n8
denotes the unit outward normal vector to Bs. By construction (see (2)), n. is actually equal to n®, the unit outward
normal vector to B.

Case 2. Let T be another open set, T € Y and such that BN T = . The part corresponding to the material in the cell
Yisnow Y =Y\ (T USB);itis assumed to be connected and set

L= JeG+1. (3)
Ee7l

The perforated domain §2]; with e-periodic perforations of size £§ and e-periodic perforations of size € in the same
time, is obtained by removing from £2 the set of holes B,s and T,

* X *
55:9\(B85UT€)={xe.Q‘{g}eYa}. )
As above, nET denotes the unit outward normal vector to B.s. By construction (see (2)), n. is actually equal to n, the

unit outward normal vector to B.
We will also use in the sequel the notation:

®)
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where Q; is a perforated domain with e-periodic perforations of size €. As in Case 1, Tgint denotes the set of holes
in T, that do not meet the boundary 952.

2. Unfolding operators in perforated domains and boundary unfolding operators

Following [2], [z] denotes the unique integer combination Z?]:l njl; such that z — [z]y belongs to ¥ and set

{z}y =z — [z]y. For x € RV, there exists a unique element [Z1y such that x — &[]y = e{%}y, where {7}y € Y. For
domains without holes, the definition of the periodic unfolding operator introduced in [2] is the following:

x A
Te(P)(x,y) = ¢<E[EL +8y> a.e. for (x,y) € 2, x Y, .
0 a.e. for (.X, y) e Ae X Y’

for any ¢ Lebesgue-measurable on £2. This operator acts from L?(§2) to L?(£2 x Y).

Let us recall the main properties of 7, from [2] (for proofs, we refer the reader to [2] and [6]):

Proposition 2.1. If {w,} is a sequence in L' (§2) satisfying ng |we|dx — 0. Then

7e
/wedx: / T.(we)dxdy ie., /wgdx— / T (we)dxdy — 0.

2 2xY 2 2xY

Proposition 2.2. Let w, — w weakly in H'(£2). Then, up to a subsequence, there exists W € L>(£2; HI}er(Y )) such
that
T.(Vwg) = Vew + V0 weakly in L2 (2 x Y).

. For domains with holes we have a definition similar to (6), see for more details [4]. For ¢ Lebesgue-measurable on
§2¢, the periodic unfolding operator 1.* is defined by

: 5 *
Tg*(qb)(x, y) = ¢(8[EL +8y) a.e. for (x,y) € 2, x Y*, o
0 ae. for (x,y) € A, x Y™,

Let us observe that 7. (¢) = To()| 2 x v+, so that the operator 7. has almost the same properties as the operator 7.

In particular, one has the following results, corresponding respectively, to Propositions 2.1 and 2.2:

Proposition 2.3. If {w,} is a sequence in L' (82}) satisfying fA* |we|dx — 0, then

7;*
/ we dx =~ / T (we)dxdy ie, / we dx — / 7 (wg)dxdy — 0.
Q2 2xy* QF 2xY*

e

Proposition 2.4. Let w, belong to H' (82}) and satisfying || wel| g1 @n S C. Then, up to a subsequence, there exist w
in H'(82) and @ in L*(2; Hyo, (Y*)), such that

Wy — 0w weakly in L*(£2),

T (wg) = w  weakly in Lz(.Q; Hl(Y*)),

TH(Vwe) = Vw + Vyb  weakly in L*(2 x Y*).

Now, we recall the definition of the operator ’Tglg, a linear unfolding operator on the boundary of the holes B,
specific for small holes.
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Definition 2.5. Let ¢ € L? (9 B,s), with p € [1, 400[. The boundary unfolding operator 7;{’3 is defined by:

ng(qﬁ)(x,z):q&(s[z} +88z> ae. . forx eR", 7€ 9B. (8)
Y

It is easily seen that for every ¢ in L' (9 B.s),
8N—1

f¢(x)do(x)= - / T5($)(x, z) dx do (2).
0Bgs RN x0B

For g in L2(3B), denote by Mz (g) its mean value on d B, Myp(g) = w_lB\ faB gdo.

Proposition 2.6. Let g € L2(3B) and set:

1
ges(x) = g(E <§>) forall x € 0Bgs. )]
The following estimate holds for every ¢ € H'(£2):
8n—1
‘ / ges(X)pdx| < C . (|MaB(g)| + 85)||V¢||(L2(_Q))N- (10)

0Bgs

Moreover, as ¢ — 0 one has the convergences:

L If Mo () #0, then 5t [y 8es (1) () do(x) — [0BIMap(g) [ ¢ (x) dx:
2. If Mag(8) =0, then [y ges(x)p(x) dor (x) — 0.

Idea of the proof. For holes of size of order of ¢ (i.e., with § = 1), a boundary operator denoted ’];b, was introduced
for the first time in [3], its definition is (8) with 6 = 1. Most of the properties of Te% are almost transcriptions of the
corresponding ones of Tgb and are obtained by a rescaling in § (for details, see [7]).

3. The main homogenization results

Let A®(x) = (afj (x))1<i, j<n be a measurable matrix, bounded in L*°(£2) and satisfying:

alE)? < AP(x)EE < BlE? ae.xe R, witha >0, B>0. (an
Let us assume that there exists a constant k satisfying
8N7]
k= lim ,  with0 <k < oo. (12)
e—=0 ¢

Problem 1. With the geometry and notation described in Case 1 from Section 2, consider the following problem:
—div(A®Vugs) = f  in 25,
A*Vues -n8 =gss on 9B, 13)
ues =0 on 325\ IBL,

where f € L?(£2) and g, is defined by (9) with g in L>(3 B).

Problem 2. With the geometry described in Case 2 from Section 2, consider the problem:
—div(A®*Vul) = f in 2%,
A*Vu¥s-nl =h, ondT™,
APVt -nf =ge5 ondBLY,
ufy =0 ondR%\ (@B UITH),

where h°(x) = h(3) with & in L2@T).

(14)
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Theorem 3.1. (Problem 1.) Suppose that (11) and (12) are satisfied. Let us assume that
T (A®)(x,y) > A(x,y) ae inf2 xY. (15)
Let ugs be the solution of (13). There exist ug in HO1 (82) and i in L*($2; leer(Y)) with

Ugs — ug weakly in LZ(.Q),

To(ugs) — uo  weakly in L*($2; H (Y)), (16)
and such that, for all ¥ in HO1 (£2) and for all @ in L*(£2; leer(Y)), one has:
/ A(Vyug + Vyi) (Vi + Vy @) dx dy = / fyrdx +k|0B|IMjyp(g) / vdx. 17)
2xY Q Q

Theorem 3.2. (Problem 2.) Under the same assumptions as in Theorem 3.1, let u’’; be the solution of (14).

(i) Let us assume that Myt (h) # 0. Then, there exist ufy € Hy (2), i* € L*($2; Hpo,(Y)) with
gy — Oug  weakly in Lz(.Q),
T (cugs) — uog weakly in Lz(.Q; HILC(Y*)),

and satisfying, for all ¥ € H (2) and for all @ in L*($2; Hyo, (Y*)),

/ A(qug—I—Vyﬁo)(VlI/—I—V),d))dxdy:Q/flI/dx+9|8T|M3T(h)/ll/(x)dx.
2xY* ko) 2

(i) Suppose that My (h) = 0. Then, there exist u* € Hy (2), i* € L*($2; Hpo (Y)) with
Ues — Oug weakly in LZ(.Q),
T (ues) — uo  weakly in Lz(.Q; HIIOC(Y*)),
and satisfying, for all ¥ € H(} (£2) and for all @ in L?($2; leer(Y*)),

/ A(qu*—l-Vyﬁ*)(VlI/+Vy<1§)dxdy=9/fl1/dx+k9|aB|M33(g)dex.
2xY* 2 2

Sketch of the proof of Theorem 3.1. Define the following functional space:
Vet ={ve H'(2:5) | v=00n32 N2},

which a Hilbert space for the norm of the gradient. The variational formulation of Problem 1 is: find ugs in Vos‘s
satisfying:

/ASVu€3V¢dx=/f¢dx+ / gesds, Vo € Ves. (18)

Q¢s $2¢s 0Bes

Then, due to properties (11) of the operator A®, by Lax—Milgram theorem, there exists u.s in Vs, unique solution of
Problem 1. By taking u.s as a test function in (18), thanks to Proposition 2.6, we get immediately the estimate:

luesllyes < C,

uniformly with respect to € and 8. Then convergences (16) follow from Proposition 2.2 which also gives the existence
of i € L2($2; HI} (Y)) such that (up to a subsequence),

T

To(Vug,s) = Veuo + Vyii - weakly in L2(£2; LE, (V). (19)

loc
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Let now ¢ in D(£2). For ¢ and § small enough, its restriction to §2 is in V(f‘S and so, it can be taken as test function
in (18). Unfolding the left-hand side term in (18) with 7, one gets:

/ To(A%) (5. ) To(Vatte.5)(x, y)Vo (x, y) dx dy
2xYs

7.
~ / fodx +
25

8N71

&

/ g T5(¢)(x,2) dx do (). (20)
RN x9dB

Using convergences (15) and (19) as well as Proposition 2.6, one immediately gets:

/ A(quo—i—Vyﬁ)thdxdy=/.f1ﬂdx—|—k/.g(z)d01/¢dx, 21
Q Q

2xY JdB

which, by density, holds for any ¢ in HOl (§2). The next step is to take as test function in (18), w(-) = ey ()¢ (), with
v eD(2),¢e HI}er(Y ). Unfolding again with 7, and passing to the limit, yields:

/ A(Vyiug + Vyi)yVygpdxdy =0,
2xY
which together with (21) gives (17).

Sketch of the proof of Theorem 3.2. The proof in this case follows the along the lines the former one. The major
difference is that now, one has to unfold with 7,* and make use of Propositions 2.3 and 2.4 to get the result.

Remark 3.3. Suppose that A® is defined by A°(-) = A(-/e), A(y) = (a;j(y))1<i,j<ny With a;; Y-periodic and A
satisfying a.e. on Y an inequality of type (11). Then the unfolding homogenized limit problems from above theorems,
can be easily formulated in the standard strong formulation. For example, the limit problem in Theorem 3.1 rewrites
in the form:

{ —div(AMVug) = f +k|dB|Mjyp(g) in £2,
up=0 1inds2,

where A"™ is the classical homogenized operator for fixed domains:

N N
a .

(Abom) / a0 = Y a5 ) a,
J P W

with the correctors )2]- (j=1,...,N) defined, for all ¢ € leer(Y), by the cell problems,

% Yeperiodic, My (f,) =0, fA(yW(xf—y,-)w(y)dy:o.
Y
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