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Abstract

We give a closedness result for a convex set of BMO semi-martingales, that contains solutions to quadratic BSDEs. We deduce
convergence and monotone stability results for quadratic BSDEs. To cite this article: P. Barrieu et al., C. R. Acad. Sci. Paris,
Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Un résultat de fermeture pour des semi-martingales BMO et une application aux EDSRs à croissance quadratique. Nous
donnons un résultat de fermeture pour un ensemble convexe de semi-martingales BMO, qui inclut les solutions de EDSRs à
croissance quadratique. Nous en déduisons des résultats de convergence et de stabilité monotone pour les EDSRs à croissance
quadratique. Pour citer cet article : P. Barrieu et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

L’étude des solutions des équations différentielles rétrogrades (EDSRs) à croissance quadratique met particuliè-
rement en évidence l’intêret des semi-martingales BMO. Plus précisément, nous nous intéressons ici aux EDSRs du
type −dYt = g(t, Yt ,Zt )dt − Zt dWt ; YT = ξT ∈ L

∞ où W est un mouvement Brownien d-dimensionnel défini sur
un espace de probabilité filtré (Ω,F ,P, (Ft )t�T ), lorsque le triplet (g,Yt ,Zt ) satisfait :

∣∣g(ω, t, y, z)
∣∣ � cl + a|y| + h

2
|z|2, dP ⊗ dt-p.s. (1)

Toutefois, nous adoptons un cadre d’étude BMO et non le cadre plus standard H
2, i.e. la solution à cette équation

est un couple de processus adaptés (Y,Z) tel que Y est un processus continu et borné et la partie martingale MZ =
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∫ .

0 Zs dWs est une martingale BMO. En particulier, nous montrons l’équivalence suivante : Yt ∈ L
∞ ⇔ Zt ∈ BMO(P)

(Proposition 1.1).
Comme conséquence d’un résultat de fermeture pour les martingales exponentielles de martingales BMO (Théo-

rème 2.2), un résultat général de stabilité mixte pour certaines classes de semi-martingales uniformément bornées
définies comme Yn

t = E[Ln
t,T ξn

T + ∫ T

t
Ln

t,sk
n
s ds/Ft ] où Ln est une suite de martingales exponentielles associées à

des martingales BMO, les processus ξn et kn satisfont certaines propriétés de bornitude, est ensuite obtenu (Pro-
position 2.3). La version différentielle est une EDSR linéaire dont la classe, notée Sc,k,r , est un ensemble convexe,
où c, k, r représentent les diverses constantes. Il est également possible de réécrire, sous certaines conditions, une
semi-martingale quadratique rétrograde Y définie comme −dYt = gt dt − Zt dWt ; YT = ξT ∈ L

∞, lorsque le triplet
(g,Y,Z) satisfait la condition :

|gt | � cl + a|Yt | + h

2
|Zt |2, dP ⊗ dt-a.s. (2)

de telle sorte que Y soit aussi dans Sc,k,r (Lemma 3.1).
Enfin, dans la dernière partie de cette Note, nous montrons un résultat général de convergence pour les semi-

martingales quadratiques satisfaisant la condition (2). Un résultat d’existence pour les EDSRs quadratiques (Théo-
rème 3.3) est obtenu alors sous des hypothèses supplémentaires d’approximation monotone du coefficient g de
l’EDSR.

1. BMO-martingales and quadratic BSDEs

Backward Stochastic Differential equations (BSDEs) are equations of the following type:

−dYt = g(t, Yt ,Zt )dt − Zt dWt, YT = ξT ∈ L
∞, (3)

where W is a d-dimensional Brownian motion on a filtered space (Ω,F ,P, (Ft )t�T ) and (Y,Z) are two adapted
processes in the appropriate spaces. Here and after Zt dWt simply denotes the scalar product and, when working with
BSDEs, the filtration (Ft )t�T refers to the natural filtration of the Brownian motion augmented by the P-null sets
of F .

Such equations were introduced by Peng and Pardoux in 1990 [8] when the coefficient g is Lipschitz continuous.
They were soon recognized as powerful tools. Recently, quadratic BSDEs have recently received an accrued interest.
The existence and uniqueness issues for solutions to these quadratic equations, first examined by Kobylanski [6],
remain however delicate.

We adopt here a new approach to study these questions. First, the coefficient g of the BSDE (3), defined on the
space Ω × R

+ × R × R
1×d and progressively measurable w.r to (ω, t) satisfies some quadratic growth condition∣∣g(ω, t, y, z)

∣∣ � cl + a|y| + h

2
|z|2, dP ⊗ dt-a.s. (4)

Second, we consider the BMO-framework instead of the more standard H
2-framework: the solution is an adapted pair

of processes (Y,Z) such that Y is a real continuous bounded process and the martingale part MZ = ∫ .

0 Zs dWs in (3)
is a BMO-martingale, i.e.

sup
t∈[0,T ]

E

[ T∫
t

|Zs |2 ds/Ft

]
is bounded by the so-called norm ‖Z‖2

BMO(P).

In this Note, we emphasize the flexibility offered by BMO-martingales, especially when dealing with changes of
probability measures. In particular, generalizing bounded martingales, BMO-martingales allow a nice extension of
Girsanov theorem (see Kazamaki [5, Theorem 3.6]). Several authors have underlined the particular role played by
BMO-martingales in the study of quadratic growth BSDEs. Hu, Imkeller and Müller [4] were among the first to use
properties of BMO martingales with applications in mathematical finance. The BMO framework appears all the more
natural so since it is deeply linked to the quadratic assumption on the generator g, as shown in the proposition below:

Proposition 1.1. Let (Yt ,Zt ) be a solution in the (L∞,H
2)-framework of

−dYt = g(t, Yt ,Zt )dt − Zt dWt, YT = ξT ∈ L
∞,
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such that g satisfies Condition (4). Then:

Y ∗
T = sup

0�t�T

|Yt | ∈ L
∞ ⇔ MZ := Z.W ∈ BMO(P).

Besides, ‖Y‖∞ and ‖Z‖BMO(P) are uniformly bounded by constants depending only on a, h and ‖ξ‖∞.

The proof of this result is rather standard and is omitted here.

2. Mixed stability results for some class of semi-martingales

This section aims at studying some stability results for some class of semi-martingales. Taking the limit of stochas-
tic integrals is often a crucial issue. Several results have been obtained for sequences of martingales (see for instance
the survey paper of Delbaen and Schachermayer [2]). Here, we consider this question for BMO-semimartingales, i.e.
semimartingales with a BMO-martingale part. We first study some properties of exponential martingales of BMO-
martingales with BMO-norm bounded by r . The sets are respectively denoted by Lr = {E(M), M ∈ BMO(r)} and
BMO(P, r) = {M ∈ BMO, ‖M‖BMO � r}.

2.1. Closedness theorem of exponential martingales of BMO-martingales

The following theorem presents some key results in the characterization of BMO-martingales and their exponentials
(Theorems 2.4 and 3.1. in Kazamaki [5] and Proposition 1 in Doléans-Dade and Meyer [3]):

Theorem 2.1. (i) If M ∈ BMO(r), then there exists qr > 1, simply depending on r , such that E(M) satisfies the
following inequality for all stopping times τ :

E
[
E(M)

qr∞/Fτ

]
� CqrE(M)qr

τ , a.s. (5)

(ii) M ∈ BMO(r) if and only if for any arbitrary bounded positive martingale Yt = E[Y∞/Ft ], E(M) satisfies the
following inequality for all stopping times τ and some pr > 1 simply depending on r :

E(M)τY
pr
τ � KrE

[
E(M)∞Y

pr∞ /Fτ

]
, a.s. (6)

Note that from (i), E(M) is uniformly integrable and uniformly bounded in L
qr , and Lr ⊂ H

qr for some qr > 1.
A classical closedness result for exponential martingales is that of Yor [9], stating that the limit of a sequence of

exponential martingales bounded in H
q , with q > 1, is also an exponential martingale in H

q . The previous theorem
ensures that the conditions needed to apply Yor’s results are satisfied in Lr :

Theorem 2.2. The set Lr is convex and closed for the convergence in probability of the terminal variables E(M)∞.

Proof. In the sequel, for the sake of simplicity, we also use the generic notation Lt ≡ E(M)t for the exponential
martingale. The proof of this closedness result is mainly based upon the linearity of the previous Inequality (6). More
precisely,

• Closedness: Let us consider a sequence Ln of exponential martingales E(Mn) associated with BMO(r)-
martingales Mn, such that their terminal values Ln∞ converge in probability towards L∗∞. We want to prove that the
associated process L∗ is in fact an element of Lr . As previously emphasized, thanks to Inequality (5), the sequence
Ln∞ is uniformly integrable in L

q ′
for 1 < q ′ < qr . Ln∞ is a bounded sequence in L

qr , that converges uniformly
in L

q ′
towards L∗∞. Hence the sequence of martingales Ln

t converges uniformly in t in H
q ′

towards L∗
t , and from

Yor [9], we know that L∗ is an exponential martingale E(M∗) of a local martingale M∗. From Inequality (6), which
is asymptotically stable, M∗ is in fact a true martingale of BMO(r).

• Convexity: Let us consider a convex combination α of exponential martingales Li , L̄α
t ≡ ∑

i αiL
i
t . Therefore,

dL̄α
t /L̄α

t = (
∑

i αiL
i
t dMi

t )/
∑

i αiL
i
t = ∑

i α̂i,t dMi
t ≡ dM̂t , where α̂i,t = αiL

i
t /(

∑
j αjL

j
t ). The next step is then

to prove that M̂ is a BMO(r)-martingale. This is a direct consequence of Inequality (6), which ensures that any
convex combination of Li also satisfies Inequality (6) and therefore, from Theorem 2.1, the associated martingale is
in BMO(r). �
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2.2. Mixed stability result for some semi-martingale class

Let us first introduce some useful notation on sequences of convex combinations: The direct convex combinations
of Xi , for i � n, are denoted as X̄α,n = ∑

i�n αn
i Xi . For random convex combinations, i.e. combinations with random

weights α̂i,t defined as above, we use the notation X̂n.
We now consider a family of uniformly bounded semi-martingales Yn

t = E[Ln
t,T ξn

T + ∫ T

t
Ln

t,sk
n
s ds/Ft ], where

(ξn
T ) is a sequence of uniformly bounded FT -measurable random variables, (kn) is a sequence of uniformly bounded

Ft -adapted processes, Ln = E(Mn) is a sequence of exponential martingales of Lr and Ln
t,T = Ln

T /Ln
t .

Proposition 2.3. (i) There exists a sequence of convex combination (αn) such that ξ̂
α,n
T and k̂

α,n
t converges in L

p

towards ξ̂∗
T and k̂∗

t respectively and such that the exponential martingale L̄
α,n
t converges towards L̄∗

t in H
q ′

, for

1 < q ′ < qr and 1
p

+ 1
q ′ < 1. Moreover, Ŷ

α,n
t = E[L̄α,n

t,T ξ̂
α,n
T + ∫ T

t
L̄

α,n
t,s k̂

α,n
s ds/Ft ] converges uniformly in H

p towards

Ŷ ∗
t = E[L̄∗

t,T ξ̂∗
T + ∫ T

t
L̄∗

t,s k̂
∗
s ds/Ft ].

(ii) If Yn
τ converges towards Yτ in probability for all stopping times τ � T , then Yτ = Ŷ ∗

τ .

Proof. As a result of Theorem 2.2, the exponential martingale L̄α,n converges to the exponential martingale L̄∗ in H
q ′

.
Moreover, since ξ̂

α,n
T is uniformly bounded, there exists a convex combination, still denoted by ξ̂

α,n
T , converging in

any L
p-space towards ξ∗

T . The same holds true for k̂α,n. The convergence of Ŷ
α,n
t = E[L̄α,n

t,T ξ̂
α,n
T /Ft ] is uniform, as a

consequence of both the convergence of terminal values and the theorem of martingale convergence. If in addition, the
sequence (Y n) converges, then the convex combination Ŷ α converges towards the same limit. Hence the results. �
2.3. Link with linear BSDEs

The class of semimartingales studied above is strongly connected with the class of following linear BSDEs. More
precisely, let (Y,Z) be a solution of the linear BSDE: −dYt = kt dt − Zt(dWt + Θt dt); YT = ξT .

When Y is uniformly bounded by c, kt by k, and Θt is in BMO(P, r), Y is said to be in Sc,k,r .

Proposition 2.4. The class Sc,k,r is convex and closed w.r to the convergence in probability of the solutions Y .

Both Propositions 2.4 and 2.3 are identical after having observed that the dual representation of such a linear BSDE
is: Yt = E[Lt,T ξT + ∫ T

t
Lt,sks ds/Ft ], where L = E(−Θ · W). Note also that as a consequence of Proposition 1.1,

since Y is bounded, Z is in BMO(P), with a BMO-norm that only depends on the constants c, k and r . The coefficient
of this linear BSDE is g(t, y, z) = kt −zθ . While the standard framework for linear BSDEs involves a bounded process
Θ and a terminal condition in L

2, here for a bounded terminal condition, we are able to reach BMO processes Θ .

Remark. Our study has some connection with some existing results. In particular, the closedness properties in L
2

of BMO-semi-martingale Yn = Zn · X with dXt = dWt + Θ dt have been established by Delbaen et al. in [1]. Our
approach is however different since we study stability results of BMO-semi-martingales Yn = Zn · Xn with dXn

t =
dWt + Θn dt under some structural conditions of the type uniform BMO on the Θn. Our results coincide when Θt is
given but the main point of this study is thus to use the previous results on exponential martingale of BMO-martingales
to obtain the convergence, up to some convex combination, of the Θn sequence.

3. Stability results for quadratic backward semi-martingales

In this section, we study quadratic backward semi-martingales Y defined as −dYt = gt dt − Zt dWt ; YT =
ξT ∈ L

∞, such that Y is uniformly bounded by c, Z is in BMO and the triplet (g,Y,Z) satisfies the following
condition:

|gt | � cl + a|Yt | + h |Zt |2, dP ⊗ dt-a.s. (7)

2
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Note that Proposition 1.1 ensures that the BMO-norm of Z is uniformly bounded by a constant cz that simply
depends on cl a, h and c.

3.1. Quadratic semi-martingales and the class Sc,k,r

Before presenting some stability results, we relate these quadratic semi-martingales with the class Sc,k,r of lin-
ear BSDEs previously introduced. The following algebraic transformation of the coefficient g will be useful in the
following to obtain some stability results:

Lemma 3.1. Under Condition (7), the quadratic backward semi-martingale Y defined as −dYt = gt dt −Zt dWt ; YT =
ξT ∈ L

∞ belongs to the class Sc,k,r , where c is the uniform bound of Y , k = cl + ac and r is h2

4 cz.

Proof. From Condition (7) and given the assumptions on Y , there exists a constant k such that cl + a|Yt | � k. Hence,
denoting gt ≡ ft + h

2 |Zt |2, we have −k − h|Zt |2 � ft � k. The idea is then to write ft as: ft = (ft + k)+ − (ft +
k)− − k. The process kt = (ft + k)+ − k is bounded by k.

Hence 0 � (ft + k)− � h|Zt |2 and there exists a process Ut such that 0 � Ut � 1 and (ft + k)− = hUt |Zt |2.
Coming back to the gt decomposition, we introduce the process Θt ≡ h(Ut − 1

2 )Zt , and rewrite gt as gt = kt − ZtΘt .
Since Z is in BMO(P), with a uniform BMO norm by assumption and U is uniformly bounded by construction, Θ is
also in BMO(P). We denote this BMO-norm by r . Hence the result. �
3.2. Monotone stability of quadratic semi-martingales

The following theorem gives a key result on the convergence of sequences of quadratic backward semi-martingales.
The proof of this result is a straightforward alternative to standard proofs that can be found in the literature (e.g.
Kobylanski [6]).

Theorem 3.2. Let us consider a uniformly bounded sequence of quadratic backward semi-martingales

−dYn
t = gn

t dt − Zn
t dWt ; Yn

T = ξT ∈ L
∞,

such that Condition (7) is satisfied.

1. Let us assume that Yn converges almost surely uniformly towards a process Y .
(i) The limit process Y is in the class Sc,k,r with the representation −dYt = k∗

t dt − Z∗
t (dWt + Θ∗

t dt).
(ii) The sequence Zn is a Cauchy sequence for the BMO-norm converging towards the process Z∗.

2. If the sequence Yn converges monotonically almost surely towards a process Y , then Y is a continuous process
and the convergence is uniform.

Proof. 1. (i) The result on Y is obtained as a straightforward application of Proposition 2.3.
(ii) From Condition (7), since the process Zn is in BMO(P, r), we have, for any i, j and any u ∈ [0, T ],

E[∫ T

u
|gi

s − g
j
s |ds/Fu] � E[∫ T

u
(|gi

s | + |gj
s |)ds/Fu] � Cg , where Cg is related to the BMO constant of Zn. This

inequality is the key argument to prove the convergence of the Zn in BMO. More precisely, |Y i
t − Y

j
t |2 +

E[∫ T

t
|Zi

s − Z
j
s |2 ds/Ft ] � 2E[∫ T

t
|Y i

s − Y
j
s ||gi

s − g
j
s |ds/Ft ] � 2E[∫ T

t
supt�u�s |Y i

u − Y
j
u ||gi

s − g
j
s |ds/Ft ].

Denoting the increasing process supt�u�s |Y i
u − Y

j
u | by A

i,j
t,s and using an integration by part formula, we can

rewrite E[∫ T

t
(A

i,j
t,s − A

i,j
t,t )|gi

s − g
j
s |ds/Ft ] = E[∫ T

t
dA

i,j
t,uE[∫ T

u
|gi

s − g
j
s |ds/Fu]/Ft ].

Using the inequality on gi previously noticed,

∣∣Y i
t − Y

j
t

∣∣2 + E

[ T∫
t

∣∣Zi
s − Z

j
s

∣∣2
ds/Ft

]
� 2Cg

∣∣Y i
t − Y

j
t

∣∣ + 2CgE
[
A

i,j
t,T − A

i,j
t,t /Ft

]

� 2CgE

[
sup

∣∣Y i
u − Y

j
u

∣∣/Ft

]
.

t�u�T
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Finally, E[∫ T

t
|Zi

s − Z
j
s |2 ds/Ft ] � 2CgE[sup0�u�T |Y i

u − Y
j
u |/Ft ]. From the a.s. uniform convergence of Y i ,

(Zi) is a BMO(r) Cauchy sequence whose the limit is also in BMO(r). Note that this result is obtained without any
particular knowledge on the convergence of the sequence of coefficients gn.

2. comes from Dini’s Theorem. �
3.3. Existence of quadratic BSDEs

Using the previous results, we now prove the existence of a minimal solution for the quadratic BSDEs −dYt =
g(t, Yt ,Zt )dt −Zt dWt, when the coefficient g satisfies Condition (4). More precisely, we approximate the coefficient
g by a monotone sequence gn. Both g and gn are supposed to be continuous. Therefore the convergence of gn to g is
uniform on all compact sets.

Theorem 3.3. We consider an increasing sequence of continuous functions gn defined as:

gn(t, y, z) = g(t, y, z) ∨
(

−cl + ac − hn|z| + h

2
|z|2

)
.

(i) There exists a minimal solution (Y n,Zn) in L
∞ × BMO to the BSDE −dYn

t = gn(t, Y n
t ,Zn

t )dt − Zn
t dWt and

the sequence Yn is non-decreasing.
(ii) There exists a minimal solution (Y,Z) in L

∞ × BMO to the BSDE −dYt = g(t, Yt ,Zt )dt − Zt dWt.

Proof. The idea is to write the function gn as gn(t, y, z) = g(t, y, z) ∨ (−cl + ac − hn|z| + h
2 |z|2) = f n(t, y, z) +

h
2 |z|2, where f n is continuous with linear growth in (y, z). Using the standard exponential transformation, we can
rewrite the problem in terms of a BSDE with continuous coefficients having a linear growth in (y, z). The results
from Lepeltier and San Martin [7] ensure the existence of a minimal solution to the BSDE associated with gn and the
sequence Yn is non-decreasing. �
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