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Abstract

In this Note, we determine all the totally positive integers of Q(
√

5) which cannot be represented as sums of distinct integral
squares. To cite this article: P.-S. Park, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sommes de carrés distinctes dans l’anneau d’entiers de Q(
√

5). Nous déterminons tous les entiers totalement positifs qui ne
peuvent pas être représentés comme des sommes de carrés distincts d’entiers dans Q(

√
5). Pour citer cet article : P.-S. Park, C. R.

Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

After Lagrange’s Four Squares Theorem many mathematicians studied sums of squares in various algebraic number
fields. Let F be an algebraic number field of degree n = r1 + 2r2 with r1 real embeddings and r2 pairs of complex
embeddings. If all embeddings of F are real, that is, n = r1, then we call F totally real. If an element α ∈ F satisfies
σ(α) > 0 for all real embeddings σ , we call α totally positive. In 1902 Hilbert asked whether every totally positive
integer of F is a sum of four squares in F . Götzky answered by the surprising theorem [1]:

Theorem 1.1. The field Q(
√

5) is the only real quadratic field in which every totally positive integer can be represented
as a sum of four integral squares.

This was improved by Maass to reduce the number of squares [3]:

Theorem 1.2. In Q(
√

5) every totally positive integer can be represented as a sum of three integral squares.

Furthermore, Siegel proved the remarkable theorem [4]:
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Theorem 1.3. If in a totally real field F , every totally positive integer can be represented as a sum of integral squares,
then F is either Q or Q(

√
5).

After a few years Sprague [5] showed the following theorem:

Theorem 1.4. Every positive integer in Q larger than 128 can be represented as a sum of distinct integral squares.

There are 31 positive integers which cannot be represented as sums of distinct squares: 2, 3, 6, 7, 8, 11, 12, 15, 18,
19, 22, 23, 24, 27, 28, 31, 32, 33, 43, 44, 47, 48, 60, 67, 72, 76, 92, 96, 108, 112 and 128.

Now let us consider the field Q(
√

5), the other totally real field in which sums of squares represent all totally
positive integers.

2. Result

The ring of integers of the number field Q(
√

5) is generated by 1 and the fundamental unit ε = 1+√
5

2 and also by 1

and ε2 = 3+√
5

2 . The totally positive integers in Q(
√

5) can be characterized as in the following lemma due to Kim [2].
We give a simpler proof here.

Lemma 2.1. Every totally positive integer in Q(
√

5) is of the form ε2n(a + bε2) for some n ∈ Z and nonnegative
integers a, b.

Proof. Let S be the set of totally positive integers of the form stated above. Suppose that there exist totally positive
integers not belonging to S. Choose α = a + bε2 with minimal trace among those. Then a and b should have opposite
signs. If a < 0 < b, then (a + bε2)ε−2 = b + aε−2 is of trace 2b + 3a, which is smaller than Tr(α) = 2a + 3b. Hence
(a + bε2)ε−2 ∈ S by the minimality condition. This means α ∈ S, which is a contradiction.

Now assume a > 0 > b. Consider αε2 = −b + (a + 3b)ε2. If a + 3b � 0, we are finished. If a + 3b < 0, then
Tr(αε2) = 3a + 7b < 2a + 3b. By the minimality condition, (a + bε2)ε2 ∈ S. This is also a contradiction. Hence the
lemma is proved. �
Lemma 2.2. Any nonnegative rational integer except 2, 3, 7, 8, 11, 12, 23, 27, 28, 32, 48 can be represented as a sum
of distinct integral squares in Q(

√
5).

Proof. Let T be the set of rational integers which can be represented as a sum of distinct squares in Z. Then
T = {0,1,4,5,9,10,13,14,16,17,20, . . .} according to Sprague’s result. Since (1 − 2ε)2 = 5, a + 5b with a, b ∈ T

can be represented as sums of distinct integral squares. For example, 128 = (32 + 72)+ 5(12 + 22 + 32). The nonneg-
ative integers not represented in this form are 2, 3, 7, 8, 11, 12, 23, 27, 28, 32 and 48. �
Theorem 2.3. Let α be a totally positive integer in Q(

√
5). Then, α cannot be represented as a sum of distinct squares

if and only if the norm of α is one of 4, 11, 19, 44 and 59.

Proof. We may consider the number a + bε2 with 0 � a � b since ε is a unit and b + aε2 = (a + bε2)ε2. If 49 �
a � b, we are finished by Lemma 2.2. Assume 0 � a � 48 and 51 � b. We have a + bε2 − (1 + ε)2 − (1 − ε)2 =
(a − 2)+ (b − 2)ε2. Since a or a − 2 can be represented as sums of distinct squares by Lemma 2.2, this case is solved.

Thus we now investigate the case 0 � a � b � 50. All except 2ε2,1 + 2ε2,1 + 3ε2,2 + 4ε2 and 2 + 5ε2 can be
solved by using one of the following relations:

(1 + ε)2 = −1 + 3ε2; (1 − ε)2 = 3 − ε2; (1 + 2ε)2 = −3 + 8ε2;
(1 + ε)2 + (2 − ε)2 = 7; (1 − ε)2 + (1 + 2ε)2 = 7ε2;
(1 + ε)2 + (1 − ε)2 = 2 + 2ε2; (1 + ε)2 + (3 + ε)2 = 2 + 10ε2.

The exceptions are of norm 4, 11, 19, 44 and 59, respectively, and they cannot be represented as sums of distinct
squares. We only prove this for 2 + 5ε2 since the other four exceptions can be proved in a similar manner.
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Suppose that 2 + 5ε2 can be represented as a sum of n distinct squares. That is,

2 + 5ε2 =
n∑

i=1

(ai + biε)
2

for some ai, bi ∈ Z. Then an easy calculation shows that

2 + 5 =
n∑

i=1

(a2
i + b2

i ).

All the possible pairs (ai, bi) are (2,1), (2,−1), (2,0), (1,2), (1,−2), (1,1), (1,−1), (1,0), (0,2) and (0,1). The
squares corresponding to these pairs are 5ε2, 8 − 3ε2, 4, −3 + 8ε2, 5, −1 + 3ε2, 3 − ε2, 1, 4ε2 and ε2, respectively.
One can easily check, by comparing traces, that sums of all or parts of these squares can never be equal to 2 + 5ε2.

Furthermore, the exceptions are the only totally positive integers having those norms up to multiplication by ε2n.
Hence the theorem is proved. �

Note that in the theorem above, we do not claim that three distinct squares suffice. The situation is similar to that
of Q where four distinct squares do not suffice (for instance, 132 = 92 + 52 + 42 + 32 + 12 needs five squares).
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