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Abstract

We associate to every algebraic number field K/Q a hyperbolic surface lamination and an external fundamental group ◦ΓK :
a generalization of the fundamental germ construction of Gendron that necessarily contains external (not first order definable)
elements. The external fundamental group ◦ΓQ is an extension of the absolute Galois group Γ̂Q, that conjecturally contains a
subgroup whose abelianization is isomorphic to the idèle class group. To cite this article: T.M. Gendron, C. R. Acad. Sci. Paris,
Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Le groupe fondamental externe d’un corps de nombres algébriques. On associe à chaque corps de nombres algébriques
K/Q une lamination en surfaces hyperboliques et un groupe fondamental externe ◦ΓK : une généralisation de la construction du
germe fondamental de Gendron, qui contient nécessairement des éléments externes (non definissables au premier ordre). Le groupe
fondamental externe ◦ΓQ est une extension décomposée du groupe de Galois absolu Γ̂Q, qui contient d’après une conjecture un
sous groupe avec une « abelianisation » isomorphe au groupe de classes des idèles. Pour citer cet article : T.M. Gendron, C. R.
Acad. Sci. Paris, Ser. I 346 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The search for a geometrization of an algebraic number field K/Q has been one of the longstanding ambitions of
algebraic number theory: indeed, it could be said that the specter of such a geometrization haunts some of its most
celebrated enterprises viz. the Riemann hypothesis, non-Abelian class field theory, Grothendieck–Teichmüller theory.
One phenomenon which could achieve structural clarity via geometrization is the isomorphism of class field theory
CQ

∼= R×+ × Ẑ×, where CQ is the idèle class group of Q. Since Ẑ× ∼= Γ̂ab
Q

, where Γ̂Q = Gal(Q̄/Q), it has been sug-

gested by a number of authors [6,1,2] that the factor R×+ ought to have also a Galois interpretation. Formally, one
seeks an extension Γ̄Q → Γ̂Q in which Γ̄Q has arithmetic meaning (a “cosmic Galois group” [1]), and for which
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Γ̄ab
Q

∼= CQ. In this Note, we shall construct a candidate for Γ̄Q, defined as the external fundamental group of a
geometrization of Q by a hyperbolic surface lamination.

2. Internal fundamental group

Let M be a compact n-manifold, p : M̃ → M a universal cover and write π = π1(M). Fix an ultrafilter U on N

whose elements are of infinite cardinality. Denote by ∗π the ultraproduct of π with respect to U. Note that there is a
monomorphism c : π ↪→ ∗π given by the constant sequences, and we identify π with its image. The ultraproduct ∗π
is an example of a non-standard model of π [5].

Suppose that M is Riemannian, and equip M̃ with the pull-back metric so that π acts by isometries on M̃ . Let •M̃
be the quotient of ∗M̃ (= the ultraproduct of M̃) obtained by identifying sequence classes that are asymptotic. There
is a canonical surjective map •M̃ → M which associates to each class •x̃ the limit of p(x̃i) where {x̃i} ∈ •x̃ is any
representative sequence for which p(x̃i) converges. Note that ∗π acts on the left on •M̃ and ∗π\•M̃ ≈ M .

We may view •M̃ as a lamination with discrete transversals: the leaf containing •x̃ ∈ •M̃ consists of those sequence
classes of bounded distance from •x̃, itself a Riemannian manifold. In fact, •M̃ may be identified with the suspension
of the inclusion c, i.e. (M̃ × ∗π)/π , where (x̃, ∗α) · γ = (γ · x̃, (∗α)γ −1) for all γ ∈ π . In the suspension description,
the action of ∗π is induced by (x̃, ∗α) �→ (x̃, ∗γ ∗α), ∗γ ∈ ∗π , and so can be seen to be by leaf-wise isometries. This
discussion applies to any group extension π ⊂ G (particularly, when G = a non-standard model of π ), the appropriate
universal covering space being the suspension of the inclusion π ↪→ G.

We now indicate how ∗π codifies laminated coverings of M . For simplicity, we shall restrict ourselves to suspen-
sions over M . Let G be a compact topological group and let ρ : π → G be a representation. The suspension of ρ,
denoted M(ρ), is a principal G-bundle as well as a lamination over M , minimal if and only if ρ has dense image, with
simply connected leaves if and only if Ker(ρ) = 1. Three examples:

a. If G = 1 then M(ρ) ≈ M .
b. Let G = π̂ = the profinite completion of π , ρ the canonical map. Then M(ρ) ≈ M̂ = the algebraic universal

cover of M , a π̂ -principal bundle over M e.g. π̂\M̂ ≈ M . It is classical that M̂ and π̂ are the appropriate notions
of universal cover and fundamental group for M within the étale category.

c. Let M = G = S1 = R/Z, and for r ∈ R − Q, define ρ by ρ(n) = nr = the image of nr in S1. Then M(ρ) = Fr =
the irrational foliation of the 2-torus by lines of slope r .

An analogue of the fundamental group for M(ρ) is given by the fundamental germ �π� = �π�1M(ρ), [3,4]. In the
case when the suspension M(ρ) is minimal, it has the following description. Since ρ has dense image, the ‘standard
part’ map std(ρ) : ∗π → G, defined by taking a sequence class to the unique limit in G of its image by ρ, is onto. We
define �π� := Ker(std(ρ)) and refer to 1 → �π� → ∗π → G → 1 as the standardization exact sequence. For the three
examples above we have:

a. �π�1M = ∗π .
b. �π�1M̂ = ⋂ ∗H where H < π runs through the subgroups of finite index. This is a non-trivial subgroup of ∗π

even when π is residually finite i.e when
⋂

H is trivial (for example, when M is a compact surface).
c. We say that a sequence class ∗ε ∈ ∗R is an infinitesimal if it contains a sequence converging to 0. Then we may

identify �π�1Fr with the subgroup of ∗n ∈ ∗Z for which r∗n + ∗m is an infinitesimal for some ∗m ∈ ∗Z: in other
words, �π�1Fr is the group of Diophantine approximations of r .

We now discuss covering space theory. Let M(ρ) be as above, assumed for simplicity to be minimal with simply
connected leaves. Assume also that M has been equipped with a Riemannian metric, so that M(ρ) has a leaf-wise
Riemannian metric. There is a canonical map M̃ → M(ρ), induced by M̃ ×{1} ↪→ M̃ ×G. The image of this map is a
leaf L0 called the canonical leaf. There is a surjective map •M̃ → M(ρ) – assigning to a sequence class •x̃ the limit of
its image via M̃ → M(ρ) – which is a local isometry along the leaves. Any continuous self-map of M(ρ) preserving
L0 lifts uniquely to a self-map of •M̃ . The natural action of �π� on •M̃ has quotient �π�\•M̃ which is in canonical
bijection with M(ρ). For example, when M = Γ \H2 is a closed hyperbolic surface, we may identify �π�1M(ρ) with
a ‘Fuchsian germ’ �Γ � < PSL(2, ∗R) and �Γ �\•H2 is in bijection with M(ρ).
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It is possible to endow •M̃ with a non-trivial transverse topology in such a way that �π� acts by homeomorphisms
and so that the quotient �π�\•M̃ is homeomorphic to M(ρ). To do this, we choose a set-theoretic section s : G → ∗π
of std(ρ), so that s(ρ(γ )) = γ for all γ ∈ π , and for which s(G) is a right π -set. Then if we give ∗π the topology:
(topology of G) × (discrete), this gives a topology on M̃ × ∗π invariant by the action of π , hence inducing a topology
on •M̃ . The left multiplication action by elements of �π� permutes the “cosets” �x�s(G), �x� ∈ �π�, hence �π� acts
by homeomorphisms, and with the quotient topology, the bijection between �π�\•M̃ and M(ρ) is a homeomorphism.
(N.B. We may even choose the section s in order that any leaf of •M̃ intersects a given s(G)-transversal no more than
once: so that •M̃ is a lamination with no non-trivial holonomy.)

3. External fundamental group

Let F be the free group on two generators, F̂ its profinite completion and consider the standardization sequence
1 → �F � → ∗F → F̂ → 1. Neither ∗F nor F̂ are free groups in the discrete (combinatorial) sense. Let F̂ be the
free group generated by F̂ (viewed as a set), which has cardinality of the continuum. By universality, there is a
canonical epimorphism p̂ : F̂ → F̂ . If σ : F̂ ↪→ ∗F is a set-theoretic section of the standardization sequence whose
image contains a generating set of ∗F , then the induced map ∗p : F̂ → ∗F is an epimorphism, and p̂ = std◦∗p (by
the uniqueness part of universality). If K̂ , ∗K are the kernels of p̂, ∗p then ∗K < K̂ .

Denote by Aut(F̂ ) the group of bicontinuous automorphisms of F̂ , and by ◦Aut(F ) the subgroup of Aut(∗F) of
automorphisms which induce elements of Aut(F̂ ) i.e. automorphisms which stabilize �F � and induce bicontinuous
automorphisms of F̂ . Note that Aut(F ) as well as ∗Aut(F ) include canonically in ◦Aut(F ). Indeed, if ∗A ∈ ∗Aut(F )

and ∗x ∈ �F �, then ∗A(∗x) is represented by a sequence {Ai(xi)}, and Ai(xi) is in a subgroup of index Ni → ∞ if
and only if xi is.

Theorem 3.1. The canonical homomorphism ◦Aut(F ) → Aut(F̂ ) is surjective.

The theorem is proved as follows: note first that any element α ∈ Aut(F̂ ) defines a bijection of the generating set
of F̂, hence an automorphism α of the latter. As such, α necessarily stabilizes K̂ : we may arrange that it also stabilizes
∗K by composing, if necessary, with a suitable automorphism covering the identity of F̂ . The result descends to an
automorphism ◦α of ∗F . The association α �→ ◦α evidently defines a (set-theoretic) section.

Denote by ◦Inn(F ) those elements of ◦Aut(F ) which map to inner automorphisms of F̂ . (N.B. ∗F , acting innerly,
is a subgroup of ◦Inn(F ).) If we denote by ◦Out(F ) the quotient of ◦Aut(F ) by ◦Inn(F ), we obtain an exact sequence
1 → �Γ� → ◦Out(F ) → Out(F̂ ) → 1.

It is important to note that ◦Out(F ) contains as a proper subgroup the ultraproduct ∗Out(F ) ∼= ∗GL(2,Z) ∼=
GL(2, ∗Z). The latter is called the group of internal outer automorphisms of ∗F , and elements of ◦Out(F ) which
are not internal are called external. That we cannot replace ◦Out(F ) by ∗Out(F ) is borne out by the following:

Fact 1. Although F is dense in F̂ , Out(F ) is not dense in Out(F̂ ), hence Out(F̂ ) is not the profinite completion of
Out(F ) ∼= GL(2,Z). Thus, ∗Out(F ) does not map epimorphically onto Out(F̂ ).

Recall that the theory of a group G is the collection Th(G) of all first order sentences which are true in G. We say
G′ is a non-standard model of G if Th(G′) = Th(G) but G′ �∼= G. For example, the ultrapower ∗G is a non-standard
model of G.

Question 1. Is ◦Out(F ) a non-standard model of Out(F )?

In what follows K/Q is an arbitrary algebraic number field and Γ̂K is its absolute Galois group. Recall the
Belyi monomorphism β : Γ̂K ⊂ Γ̂Q ↪→ Out(F̂ ). We will not distinguish between Γ̂K and its image in Out(F̂ ).
Let SL(2,Z) ∼= Out+(F ) ↪→ Out(F̂ ) be the canonical inclusion. Define Σ̂ = Σ̂Q̄ as the suspension (H2 ×
Out(F̂ ))/SL(2,Z), where the action of A ∈ SL(2,Z) is defined A(z,f ) = (Az,f A−1). Then Σ̂ is a non-minimal
solenoid by hyperbolic surface orbifolds that covers the modular orbifold SL(2,Z)\H2. The action of Γ̂K on the
product H2 × Out(F̂ ), σ̂ (z, f ) = (z, σ̂ f ), descends to an action on Σ̂ by leaf-wise isometries. Since Γ̂K is a closed
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subgroup of Out(F̂ ), the quotient Σ̂K = Γ̂K\Σ̂ is also a lamination by hyperbolic surface orbifolds. By construction,
the association K �→ Σ̂K is Galois natural.

Denote by ◦ΓK the pre-image of Γ̂K in ◦Out(F ) so that �Γ� is the kernel of the standardization epimorphism
◦ΓK → Γ̂K . We have �Γ� = ⋂ ◦ΓK . Recall that there is a canonical inclusion SL(2,Z) ∼= Out+(F ) ↪→ ◦Out(F ).
By suspending this inclusion with respect to the action of SL(2,Z) on H2, we obtain a trivial lamination which we
denote ◦H2. We note that the quotient of ◦H2 by the left action of ◦Out(F ) is isometric to the modular orbifold.

We topologize ◦Out(F ) by choosing a set-theoretic section of ◦Out(F ) → Out(F̂ ) whose image is a right SL(2,Z)-
set and which maps SL(2,Z) to itself (as we did at the end of the last section). This induces a topology on ◦H2 making
it a solenoid by hyperbolic surface orbifolds, with respect to which the action by ◦Out(F ) is by homeomorphisms
which are isometries along the leaves. The quotient by �Γ� can be identified with Σ̂ = Σ̂Q̄ and in addition Σ̂K

∼=
◦ΓK\◦H2 ∼= Γ̂K\Σ̂ . This justifies viewing ◦ΓK as a fundamental group, in a way which generalizes the internal
fundamental group defined in §2.

Conjecture 3.2. There is a subgroup Γ̄Q < ◦ΓQ which is an extension of Γ̂Q and for which Γ̄ab
Q

∼= CQ.
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