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Abstract

In this Note we propose a stabilized explicit coupling scheme for fluid—structure interaction based on Nitsche’s method. The
scheme is stable irrespective of the fluid—solid density ratio. Numerical experiments show that optimal time accuracy can be
obtained by performing a few defect-correction iterations. To cite this article: E. Burman, M.A. Ferndndez, C. R. Acad. Sci.
Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Couplage explicite stabilisé en interaction fluide—structure avec la méthode de Nitsche. Dans cette Note on propose un
schéma de couplage explicite stabilisé basé sur la méthode de Nitsche. Le schéma est stable indépendamment du rapport de densités
fluide et structure. Des expériences numériques montrent qu’on peut obtenir une précision optimale en temps apres quelques
itérations d’un algorithme de Résidus Corrigés. Pour citer cet article : E. Burman, M.A. Ferndndez, C. R. Acad. Sci. Paris, Ser. |
345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version francaise abrégée

L’ objectif de cette Note est de présenter un couplage explicite stable pour la résolution numérique de problemes
d’interaction fluide—structure faisant intervenir un fluide visqueux incompressible avec un effet de masse ajoutée
important (c’est-a-dire, lorsque le rapport de densités fluide—structure est proche de 1). Dans de telles situations (les
écoulements sanguins par exemple), des instabilités numériques ont été observées (voir [13,16]) pour des schémas
explicites, comportant une seule (ou un petit nombre de) résolution fluide et solide par pas de temps. On peut trouver
dans [13,5] des explications théoriques de ces instabilités numériques. En général, ces instabilités ont été contournées
avec des schémas implicites [14,9,8] ou semi-implicites [7], souvent tres cofiteux car ils font intervenir la résolution
d’un probléme couplé (monolithique) a chaque pas de temps. Dans cette Note on propose un schéma de couplage
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explicite stabilisé basé sur la méthode de Nitsche [15,1]. Le schéma de couplage proposé associé a (1), (2) est donné
par (4)—(5) avec le choix u; = uj}, p; = pj et yp > 0. Grace aux propriétés dissipatives de la méthode de Nitsche et a
un terme de stabilisation sur I’interface, donnant un contrdle des variations des efforts du fluide, on montre (Lemme 1)
que les propriétés de stabilité du schéma sont indépendantes du rapport de densités fluide—structure, sous une condition
de type CFL. L’inconvénient de la méthode proposée est que I’erreur de troncature du terme de stabilisation est d’ordre
O(8t'/?). Cependant, des expériences numériques (Fig. 1) montrent que la précision optimale des schémas en temps
sur chaque sous-domaine peut étre récupérée en appliquant un algorithme de Résidus Corrigés (voir [17]).

1. Introduction

In this Note we address the numerical simulation of fluid—structure interaction problems involving a viscous in-
compressible fluid and an elastic structure. This problem is particularly difficult to treat efficiently when the fluid
added-mass, acting on the structure, is strong. In other words, when the fluid and solid densities are close. Indeed,
in such situations, explicit coupling schemes, i.e. that only involve the solution of the fluid and the structure once (or
just a few times) per time step (see e.g. [6] for a review), are known to give rise to numerical instabilities (see e.g.
[13,16]). Theoretical explanations of this issue have been reported in [13,5], in particular, it has been pointed out that
reducing the time step does not ‘cure’ the problem. Up to now, these instabilities have been overcome through the use
of implicit coupling schemes (see e.g. [14,9,8]). Such an approach leads to a monolithic (i.e. fully coupled) problem
at each time step, the solution of which often requires a high computational effort. Recent advances suggest the use of
semi-implicit coupling schemes, involving a reduced monolithic problem [7]. Although significant improvement have
been achieved in the last years, to the authors knowledge, none of the existing strategies are able to allow fully explicit
coupling without compromising stability.

In this Note we propose a stabilized explicit coupling scheme, based on Nitsche’s method [15,1], whose stability
properties are independent of the fluid and structure density ratio under a CFL-like condition. This breakthrough is
possible thanks to a careful analysis of the dissipative structure of the Nitsche coupling and a stabilization term giving
control of the time fluctuations of the interface fluid load. The main disadvantage of the method is that the weak

consistency of the stabilization term is of order O(§72) leading to a scheme that is too dissipative in practice. In order
to enhance accuracy, we propose an improved explicit coupling scheme involving a few defect-correction iterations
(see e.g. [17]).

2. The coupled problem

We consider a low Reynolds regime and assume that the interface undergoes infinitesimal displacements. The fluid

is described by the Stokes equations in a fixed domain QFf c R, d =2, 3. The structure is described by the classical

linear elasticity equations in the solid domain £2% C R¢. We denote by ¥ L1925 N 32f the fluid-structure interface

and 0T =r"uroty x, 902 =r4ur"u x, are given partitions of the fluid and solid boundaries, respectively.
The coupled problem reads as follows: Find the fluid velocity and pressure (u, p) and the structure displacement 5
such that

ofdu—v-ofu, p)=0, in2f, P32y —V-os(n) =0, in ",
V-u=0, in .Qf and =0, on I'd, 1)
o'(u, pnf=g, on '™y [out aS(pn® =0, on ™™,

satisfying the interface coupling conditions

u =207, on X,

o) -n* = —o'(u, p)-nf, onZX,

and the initial conditions u(0) = ug, y(0) = 5y and 9,9(0) = vo. Here, p! and p* stand for the fluid and solid densities,

os(u, p) def —pI +2ue(u) and o°(n) for the fluid and solid stress tensors, u for the fluid dynamic viscosity, € (u) for
the fluid strain rate tensor and g for a given surface load. Although (1), (2) is a simplified coupled model, it features
the main stability issues that appear in complex fluid—structure interaction problems (see e.g. [13,16,5]).
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3. The Nitsche formulation

Nitsche’s method [15] is a classical method for imposing essential boundary conditions weakly. Unlike the penalty
method, it is consistent with the original differential equation. Herein lies the advantage of Nitsche’s method. Indeed,
optimal convergence is retained without perturbing the conditioning of the matrix. Recently the Nitsche’s method was
proposed in a domain decomposition framework in [1,3], and with special focus on iterative solving in [4].

In the context of fluid—structure interaction, using implicit coupling, some results are given for vibration problems
(acoustics) in [10] and for fluid—structure interaction problems with moving fluid domains in [11].

Let Vj, x Qy, denote an inf-sup stable fluid finite element pair and X}, a suitable space for the solid displacement.
We may write the space semi-discretized Nitsche’s formulation of (1)—(2) as: For all ¢ > 0, find (uy, pn, ny,, 9) €
Vi x Op x X x Xp, such that

pffa,uh~vh dx+faf(uh,ph):e(vh)dx+/th-uhdx+psf8,ﬁh-lb;, dx

f of f £25
+as(ny, wy) — /Gf(uh, pn' - (v, — wy)ds — /(uh — dmp) -0 (v, —gn)n'ds
) P
n . .
+VZ f(uh — 0y) - (v, — wp)ds + /(nh — ) - wpdx = / g - vpds, 3)
X 25 [inyout

for all (vy, gp, Wy, wy) € Vi X Qp x X x Xj. Here, a® stands for a general solid bi-linear form associated to its
internal energy and y > 0 is the Nitsche’s penalty parameter. Note that o' (u;,, p,) |z is evaluated in a standard fashion,
facewise, on all the element faces in Y.

4. An explicit coupling scheme

In what follows, we will use the following general notation for the first order backward difference 95, X”*! &ef
St~1 (X"t — X"). The semi-discrete problem (3) can be discretized in time using a first order backward difference in
the fluid and a Newmark scheme for the structure as follows:

— Solid substep: Given (uj, p;) € V, x Qp, find (nZH, 1'72“) € X5, x Xy, such that

) . 1 . .
psf&stﬂﬁ“ ~vvhdx+§as(172+1 +ﬂZ,Wh)+/0f(u2,p2,‘)nf~whds
25 X

-n+1 -n

® . m, +0

vy /(uZ — Bsem) ') -y ds + f(% - 33;’72“) ~wpdx =0, 4
Z' S

for all (wy,, wy) € X, x Xj.
— Fluid substep: Given 951" € Xy, find (™', p/™) € Vi x Qy, such that

pf/351u2+1 SV, dx—l—/(rf””L1 :e(vh)dx+fqhv-uz+1dx

of of of
— f ottty ds — f(uZ'H — 831172"’1) o (vp, —qh)nfds
> )
w 5[ . .
+ Vﬁ /(ufrl — agth“) ~vpds + yo; f 3510 nt ot (v, gr)n® = / g -v,ds, 5
X > [inyout

def
fn+1 & O'f(ul;l-H n+l).

for all (v, g) € V;, x QO and with the notation o . Dy



470 E. Burman, M.A. Ferndndez / C. R. Acad. Sci. Paris, Ser. I 345 (2007) 467472

If yo=0,u; = uZH and p; = pZ“ for n > 0, the scheme (4), (5) is implicit. Therefore, the resulting system has

to be solved monolithically or by ‘sub-iterating’ between the fluid and the solid solvers. On the other hand, if uj = u},
and pZ = pZ for n > 0, the scheme is fully explicit. For y9 = 0 the explicit scheme is known to be unstable. However,
for yp sufficiently large it is stable under moderate conditions on the discretization parameters, as will be discussed
in the next paragraph. The explicit scheme requires an initial pressure pg which can be obtained, for instance, by
initiating the time-stepping procedure with a fully implicit step.

4.1. Stability analysis

For n > 0, we define the total discrete energy of the fluid—structure system, at the time level n, as

n—1 )
) S stlews 1 o
k=0

We then have the following stability lemma, whose proof can be found in the forthcoming paper [2]:

16Cr

E" dﬁf’o_f

) P 1
S 115 + 1950115 s + 5@ (. mi) + u(l -~

Lemma 1. Assume that the fluid—structure system is isolated, i.e. g = 0. For the above discrete coupling schemes
(4)—(5) we have the following results:

— Implicit coupling (u}, = uZ'H and p;j, = pZ'H): If y > 16C7 there holds
E"<E’ vn>o.

— Explicit coupling (u; = ujy, and p; = p;): If y > 16Cr, yo > (h + Cgr)/Cr and 6t < Csh(ywu)~! there holds

1 ot 2
JE" < EC+ Callupllg 5 + Vo;”fff(ug, pn'lg 5. ¥n>0.

With Ct denoting the constant of the element trace inequality, Cor a constant depending only on the geometry of the
fluid domain and C x the CFL-like condition constant of the explicit interface coupling.

Some remarks are in order: (i) The above lemma shows that the explicit coupling scheme is conditionally stable
in the energy norm, irrespective of the fluid—solid density ratio; (ii) A standard consistency analysis shows that the

explicit scheme is expected to be of order O(§72) in time. The reduced order is caused by the term stabilizing the time
fluctuations of the fluid load on the interface.

5. Numerical experiment

Due to the sub-optimality in time of the explicit scheme (4), (5), we propose to improve accuracy by a defect-
correction procedure [17]. This consists in performing a few (explicit) correction iterations in the explicit scheme in
order to recover the accuracy of the underlying implicit scheme (we refer to [2] for the details). In order to illustrate
the performance of the method we consider a simplified version of the fluid—structure benchmark proposed in [16], by
coupling the 2D Stokes equations (using the Laplacian operator) with the 2D wave equation. The fluid domain is given

by ot &ef [0, 5] x [0, 0.5] and the solid domain by £2° def [0, 5] x [0.5, 0.6], all the space units are in cm. At x =0
we impose a sinusoidal pressure of maximal amplitude P = 10* dyne/cm? during 5 x 1073 s corresponding to half a
period. Zero pressure is enforced at x = 5 and a symmetry condition is applied on the lower wall y = 0. The structure
is clamped on x = 0 and x = 5 and zero traction is applied on y = 0.6. The fluid physical parameters are given by pf =
1.0 g/em?, = 0.035 poise. For the solid we have p® = 1.2 g/cm? and the elastic modulus is A = 3 x 107 dyne/cm?.
For the fluid we used the Taylor—-Hood finite element and for the structure a standard IPi-continuous discretization
with mesh sizes of 4 = 0.1 cm. The time step was fixed to 87 = 10™* s. We fixed y = 100 and yy =7 x 10~* for the
explicit scheme without correction, and yp = 1.2 x 10~* with correction. All the computations have been performed
with FreeFem++ [12].

In Fig. 1 we report a comparison of the proposed method with the fully implicit coupling scheme. As expected the
explicit coupling scheme without correction provides a stable approximation, however it has a very poor accuracy.
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Fig. 1. Mid-point y-displacement (left) and outflow rate (right) vs. time.

Fig. 1. Déplacement vertical du point milieu (gauche) et flux a la sortie (droite).

After one correction step, the explicit scheme recovers first order accuracy O(8¢). After three correction steps it
provides a solution undistinguishable from the implicit scheme solution. This procedure can also be combined with
high order discretization. Indeed, although the use of high order time discretization in the stabilized explicit scheme
is not relevant (due to the truncation error of the stabilization), after a few correction iterations we recover high order
accuracy. For example, a second order scheme can be obtained by replacing the first order backward difference in the
fluid by a second order backward difference. The enhanced accuracy is clearly visible (Fig. 1), in particular, in the
outflow rate.

6. Conclusion

We have proposed a stabilized explicit coupling scheme for the efficient solution of fluid—structure interaction
problems. The stability of the method is obtained by the addition of a weakly consistent penalization term of the
(time) fluctuations of the fluid load at the interface. We show that the explicit coupling is stable irrespective of the
fluid—solid density ratio. Optimal accuracy is recovered using a defect-correction approach. The method is flexible
with respect to the choice of time stepping schemes for the fluid and the structure and allows for independent meshing
of both domains. A numerical example shows that one correction step suffices to recover first order accuracy and if
three correction steps are applied the explicit method is as precise as the implicit one. A second order scheme is also
tested and the second order accuracy is obtained after three correction steps.
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