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Abstract

In this Note we study €2 solutions of the equation —Au = ¢e" on the entire Euclidean space RY, with N > 2. We prove the
non-existence of stable solutions for N < 9. In the two-dimensional case we also demonstrate a classification theorem for solutions
which are stable outside a compact set. 7o cite this article: A. Farina, C. R. Acad. Sci. Paris, Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Solutions stables de —Au = e* dans RY. Cette Note porte sur I’étude des solutions de 1’équation —Au = e* dans RN, N >2.
Nous démontrons la non-existence de solutions stables en dimension N < 9. En dimension N = 2, nous prouvons aussi un théoréme
de classification pour les solutions stables a I’extérieur d’un compact. Pour citer cet article : A. Farina, C. R. Acad. Sci. Paris,
Ser. I 345 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

In this Note we study solutions of the semilinear partial differential equation:
~Au=e" onRN, N>2. (1)

The above problem arises in the theory of gravitational equilibrium of polytropic stars (see for instance [4,10,14]
and the references therein). On the other hand, classification results for solutions defined on the entire Euclidean space
are crucial to obtain a priori L°°-bounds for solutions of semilinear boundary value problems in bounded domains
(see for instance [2,7,12,13]).

Our main concern is to classify stable solutions of (1), or more generally, solutions of (1) which are stable (only)
outside a compact set of RV . We recall that, given a domain £2 € R" (possibly unbounded), a solution u € C%(§2) of
—Au =e" is stable in £2 if:

Ve Cl2) 0u() ::/|vw|2—e"w2 >0.
2
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Inspired by the methods that we developed in our previous works [11,12] on the classification of solutions of the
Lane—Emden equation on unbounded domains of R", we are able to prove the following:

Theorem 1. For N <9, there is no stable C? solution of Eq. (1).
Some remarks are in order.

Remarks 2. (i) Theorem 1 is sharp. Indeed, for every N > 10 Eq. (1) admits a radial stable solution. This follows
from the analysis performed in [14], as was already remarked in [7].

(ii) The above theorem answers a question raised by H. Brezis [9].

(iii)) For N =2 and 3, and under the additional assumption that u is bounded above, the conclusion of the above
Theorem 1 was previously obtained by E.N. Dancer [6]. The proof in [6] uses a completely different approach based
on ideas originated with the work of L. Ambrosio and X. Cabré [1] in the study of a conjecture of E. De Giorgi [8].
We would like to point out that the assumption: « is bounded above, is crucial for this approach.

In [7], the author also proves that, for N = 3 Eq. (1) has no negative solution of finite Morse index. Here we
focus on the two-dimensional case and prove a complete classification result for solutions which are stable outside a
compact set of R? (clearly this family of solutions includes all the solutions with finite Morse index, see for instance
[6,11,12]). More precisely, we prove:

Theorem 3. Let u € C>(R?) be a solution of (1) with N = 2. Then, u is stable outside a compact set of R? if and only
if it is of the form

3212
(4 + A2|x — xq]?)2

uu)zm[ }, >0, xo R )

Remark 4. The above Theorem 3 extends to distribution-solutions u € L}OC(Rz) such that e” € L}OC(RZ). Indeed,

the stability outside a compact set of R?, together with the local integrability of u, easily imply that /Rz e < 4o00.

Therefore, a result of H. Brezis and F. Merle [3] yields that u is bounded above on the entire Euclidean plane and

hence u is a classical solution of (1), by standard elliptic estimates. The result then follows by applying Theorem 3.
In view of the above results we are naturally led to the following:

Open Problem. Let N > 3. Classify all the solutions of (1) which are stable outside a compact set of RN

2. Proofs

Theorem 1 is a consequence of the following:

Proposition 5. Assume N > 2 and let 2 be a domain (possibly unbounded) of RN . Let u e C%(£2) be a stable
solution of

—Au=¢e" on$2. 3)
Then, for any integer m > 5 and any o € (0, 2) we have
20+ 1)u ;2 m \*H! 2 20+1
/e< Dy 2m < (m) /(Ww +lylAayl) )
2 2

for all test functions Vr € CCZ(.Q) satisfying 0 < ¢ < 1in £2.

Proof. We split the proof into three steps.
Step 1. For any ¢ € CCZ(.Q) we have

1
/|V(eau)|2(p2=%fe(2a+l)u(p2+ Z/e2auA((p2). (5)
2

2 2
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Multiply Eq. (3) by e***¢? and integrate by parts to find

/VMV(eZau)(p2+/ 2auvuv((p ) / (2a+l)u¢2

2 2 2
and therefore
(2a+l)u 2 _ au 2 2 1 2au 2 _%/ au |2 2_L/ 2au 2
[ /|v ton [ V@A) =2 19 - 5 [ @a@?).
2 2 Q Q

The latter immediately implies identity (5).
Step 2. For any ¢ € Cf.(.Q) we have

2

/e(2a+l)u¢2 < 2 /eZau Vo 2 A7) . ©
2—« 4

2 2

Inserting the function ¢ = e**

/ Qa+1u 2<f|v ou | / 2au|v(p|2+%/v(e2au)v((p2)

2 2

:/|v(eau)|2g02+/62au|v(p|2_%/eZauA((pZ). (7)
2 2

2

¢ in the quadratic form Q, we get

Using (5) in the latter inequality we obtain

1 1
/ (2oz+1)u(p2 2/ Qoa+1u 2+4f62auA(¢2)+/62au|v¢|2_ E/CZOMA((pZ),

2 2 2 2 2

which gives the desired conclusion.
Step 3. End of the proof. For any ¢ € Cg(.Q) satisfying 0 < ¢ < 1 in £2 we set ¢ = ¢"". Inserting ¢ in (6) we

obtain

2 2

and an application of Holder’s inequality leads to

2a L
m 2a+1 Za+1 2a+1 2!
/e(2a+l)ul/f2m < m(/[emuwz(m 1)] ) </UVI/I|2+ [yl Ay ] “r )
Q2 2 $2

(2a+1)
o

Now, we observe that m > 5 implies (m — 1)% > 2m and thus 1//('”_1) < Y2 in 2, since 0 < ¥ < 1

everywhere in §2. Therefore,

1
20+1
/6(2““)”‘”2’"<—2Ta</ Cort Dty ’") (/ |vw|2+|wmw]2°‘“) ,
2 2 2

which proves the claim. O

Proof of Theorem 1. Suppose to the contrary that Eq. (1) admits a stable solution for N < 9. Fix an integer m > 5
and choose « € (0, 2) such that N — 2(2a + 1) < 0 (notice that this is always possible since N < 9). For every R > 0
and every x € R consider the function ¢ (x) = ¢(%), where ¢ € CZ. (R) satisfies 0 < ¢ < 1 everywhere on R and

1<,
¢(’)_{0 if 7] > 2. ®)
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Now we apply Proposition 5 with 2 =RY and ¢ = ¢ to get

VR > 0 / e(2a+1)u g CRN—2(201+1)
[x]<R

where C is a positive constant independent on R. Letting R — +-00 in the latter inequality we obtain fRN eCatDu — 0,
a contradiction. This concludes the proof. O

Proof of Theorem 3. Since u is stable outside a compact set of R? there is Ry > 0 such that Proposition 5 holds true
with £2 = R2\ B(0, R), where B(0, Ro) denotes the ball centered at the origin and of radius Ry. For every R > Ro+3
and every x € R?, consider the function ¥g € C CZ(IR2 \ B(0, Ryp)) satisfying

& if|x[<Ro+3,

éx if [x| > Ro+3, ©)

Yr(x) ={

where ¢ was defined in the proof of Theorem 1 and £ is any function belonging to C?(R?) and such that 0 < £ < 1
on R%, £ = 0 in the ball centered at the origin and of radius Ry + 1 and £ = 1 outside the ball centered at the origin
and of radius Ry + 2. Since O, (¥ gr) = 0 we get fRz e” < 400 and hence u must be of the form (2) by a well-known
result of W. Chen and C. Li [5]. Conversely, any function given by (2) is stable outside a large ball of R2. Clearly, it
is enough to prove the claim for xo =0 and A > 0. To this end, we observe that there exists R = R(A) > 1 such that

et () for x| > R, and that, V¢ € C1(R?\ B(0, R)) we have [, ,_,|Vy|* — V>0 (the latter

1
<
= 41x 2 In?(|x]) lx]> 41x |2 In%(|x|)

follows immediately from the fact that In2 (|x|) is a positive solution of —Au = u outside the closed unit

1
41x |2 In* (|x])
ball of R?). Combining these two properties we obtain the desired conclusion. O
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