

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 342 (2006) 803-806

http://france.elsevier.com/direct/CRASS1/

Théorie des nombres

La somme des diviseurs unitaires d'un entier dans les progressions arithmétiques $(\sigma_{k,l}^*(n))$

Abdallah Derbal

Département de mathématiques, École normale supérieure vieux Kouba, B.P. 92, Alger, Algérie

Reçu le 16 novembre 2005 ; accepté après révision le 14 mars 2006

Disponible sur Internet le 2 mai 2006

Présenté par Christophe Soulé

Résumé

Soit $\sigma_{k,l}^*(n)$ la fonction somme des diviseurs unitaires du nombre entier n dans la progression arithmétique $\{l+mk\}$ définie, pour $n=\prod_{p^{\alpha}\parallel n}p^{\alpha}$, par : $\sigma_{k,l}^*(n)=\prod_{p^{\alpha}\parallel n,\ p\equiv l(k)}(1+p^{\alpha}),\ \sigma_{1,1}^*(n)=\sigma^*(n)=\sum_{d\mid n,\ (d,n/d)=1}d$. Dans cette Note nous établissons un théorème sur le comportement relatif de cette fonction et de son ordre maximal qui sera explicitement déterminé et nous donnons des majorations effectives de $\sigma_{3,l}^*(n)$. *Pour citer cet article : A. Derbal, C. R. Acad. Sci. Paris, Ser. I 342 (2006).* © 2006 Académie des sciences. Publié par Elsevier SAS. Tous droits réservés.

Abstract

The sum of unitary divisors of an integer in arithmetic progressions. Let $\sigma_{k,l}^*(n)$ be the function sum of unitary divisors in arithmetic progression $\{l+mk\}$ given, for $n=\prod_{p^\alpha\|n}p^\alpha$, by: $\sigma_{k,l}^*(n)=\prod_{p^\alpha\|n,\ p\equiv l(k)}(1+p^\alpha),\ \sigma_{1,1}^*(n)=\sigma^*(n)=\sum_{d|n,\ (d,n/d)=1}d$. In this Note we present a theorem on the relative behaviour of $\sigma_{k,l}^*(n)$ and its maximum order which will be given explicitly and we give an effective upper bound of $\sigma_{3,l}^*(n)$. To cite this article: A. Derbal, C. R. Acad. Sci. Paris, Ser. I 342 (2006).

© 2006 Académie des sciences. Publié par Elsevier SAS. Tous droits réservés.

1. Introduction

Pour k et l deux nombres entiers tels que $1 \le l \le k$ et (k,l)=1 on pose : $p_1=p_1(k,l)$ le premier le nombre premier dans la progression arithmétique $\{l+mk\}, \varphi(k)=1$ a fonction d'Euler, $\widehat{G}(k)$ l'ensemble des $\varphi(k)$ caractères de Dirichlet modulo k, $L(s,\chi)$, où $\chi \in \widehat{G}(k)$, la fonction de Dirichlet associée au caractère χ définie dans le demi plan complexe $\Re(s)>1$ par $L(s,\chi)=\sum_{n\geqslant 1}\chi(n)/n^s$. $L(s,\chi)$ se prolonge analytiquement dans tout le plan complexe $\mathbb C$ en une fonction entière sauf si le caractère χ est principal. Dans ce cas elle admet un pôle simple en s=1 et le résidu y est $\varphi(k)/k$, $\widehat{Z}(\chi)$, où $\chi \in \widehat{G}(k)$, l'ensemble des zéros complexes de la fonction $L(s,\chi)$, $\widehat{Z}(k)$ la réunion des $\varphi(k)$ ensembles $\widehat{Z}(\chi)$ et enfin $\gamma=0.57721566\ldots$ la constante d'Euler.

Définition. Soit $\rho \in \widehat{Z}(k)$ et $\chi_{i_1}, \ldots, \chi_{i_r}$ les r caractères $(1 \leqslant r \leqslant \varphi(k))$ tels que ρ est un zéro de $L(s, \chi_{i_j})$ avec un ordre de multiplicité égal à m_j $(1 \leqslant j \leqslant r)$. Pour tout l tel que $1 \leqslant l \leqslant k$ et (k, l) = 1, on pose :

$$m_{\rho,l} = \sum_{j=1}^{r} m_j \times \overline{\chi_{i_j}}(l)$$
 où $\overline{\chi_{i_j}}$ désigne le caractère conjugué de χ_{i_j} .

Le nombre $m_{\rho,l}$ est appelé l'ordre de multiplicité composé du zéro ρ relatif à l.

Outre ces notations et définitions, nous utiliserons les fonctions de la théorie analytique des nombres suivantes :

$$\theta(x;k,l) = \sum_{p \leqslant x, p \equiv l(k)} \ln p, \quad S(x;k,l) = \theta(x;k,l) - \frac{x}{\varphi(k)}, \quad \psi(x;k,l) = \sum_{p^m \leqslant x, p^m \equiv l(k)} \ln p,$$

$$R(x;k,l) = \psi(x;k,l) - \frac{x}{\varphi(k)}, \quad g(x) = \frac{1 + \ln x}{x^2 \ln^2 x}, \quad J(x;k,l) = \int_{x}^{+\infty} R(t;k,l)g(t) dt,$$

$$K(x;k,l) = \int_{x}^{+\infty} S(t;k,l)g(t) dt, \qquad D(x;k,l) = \int_{x}^{+\infty} (\psi(x;k,l) - \theta(x;k,l))g(t) dt.$$

Nous avons étudié la fonction $\sigma_{k,l}^*(n)$ et obtenu les résultats suivants :

Théorème. Soient k et l deux nombres entiers premiers entre eux tels que $1 \le l \le k$.

1. Il existe un nombre $a_{k,l} \in \mathbb{R}_+^*$ effectivement calculable tel que

$$\limsup_{n \to +\infty} \left\{ g_{k,l}^*(n) = \frac{\sigma_{k,l}^*(n)}{n \times (\ln(\varphi(k) \ln n))^{1/\varphi(k)}} \right\} = P_{k,l} \times a_{k,l} \quad \text{où } P_{k,l} = \prod_{p \equiv l(k)} \left(1 - \frac{1}{p^2} \right).$$

2. Si aucune des fonctions $L(s, \chi)$, où $\chi \in \widehat{G}(k)$, ne s'annulle dans l'intervalle]0, 1] et il existe $\rho \in \widehat{Z}(k)$ d'ordre de multiplicité composé $m_{\rho,l}$ relatif à l non nul, alors

$$\sigma_{k,l}^*(n) > P_{k,l} \times a_{k,l} \times n \times \left(\ln(\varphi(k)\ln n)\right)^{1/\varphi(k)}$$
 pour une infinité de nombres n. (P)

- 3. La proposition (P) est vraie pour $k \in \{1, ..., 13, 14, 18, 22, 26\}$ et l premier avec k tel que $1 \le l \le k$.
- 4. Pour k = 3 et $n \ge 2$, on a

$$\sigma_{3,1}^*(n) < 0.9804 \times n \times \left(\ln(2\ln n)\right)^{1/2}$$
 et $\sigma_{3,2}^*(n) < 2.624 \times n \times \left(\ln(2\ln n)\right)^{1/2}$.

2. Lemmes préparatifs

Lemme 1. Soient k et l deux entiers premiers entre eux tels que $1 \le l \le k$. On considère la suite ordonée $(p_i)_{i \in \mathbb{N}^*}$ des nombres premiers congrus à l modulo k et on pose $N_m = p_1 \times p_2 \times \cdots \times p_m$ pour $m = 1, 2, \ldots$

1. Pour tout nombre entier $n \ge N_1 = p_1$ et $m \ge 1$, on a:

$$N_m \leqslant n < N_{m+1} \Rightarrow g_{k,l}^*(n) \leqslant g_{k,l}^*(N_m).$$

2. Pour tout nombre entier $m \ge 1$ et tout nombre réel $x \in [p_m, p_{m+1}[, on a$

$$N_m = N_{k,l}(x) = \prod_{p \leq x, \ p \equiv l(k)} p$$
 (p désigne un nombre premier).

3. Pour $N = N_{k,l}(x)$ avec $x \ge p_1$, il existe un nombre réel $a_{k,l} > 0$ effectivement calculable tel que

$$g^*(N; k, l) = P_{k,l} \times a_{k,l} \times \exp\{\beta(x; k, l) + u(x)\}$$

$$P_{k,l} = \prod_{p \equiv l(k)} \left(1 - \frac{1}{p^2}\right),$$

$$\beta(x;k,l) = -K(x;k,l) + \frac{(S(x;k,l))^2 g(\xi)}{2} = -J(x;k,l) + D(x;k,l) + \frac{(S(x;k,l))^2 g(\xi)}{2},$$

 $\xi = \xi(x)$ est une fonction comprise entre x et $\varphi(k)\theta(x;k,l)$,

$$u(x;k,l) = \sum_{p>x, \ p\equiv l(k)} \left(\frac{1}{p} - \ln\left(1 + \frac{1}{p}\right)\right) > 0 \quad avec \ u(x) = O\left(\frac{1}{x\ln x}\right).$$

Lemme 2 (critère d'oscillation des fonctions R(x; k, l) et J(x; k, l)).

- 1. Soient k et l deux nombres entiers premiers entre eux tels que $1 \le l \le k$. On suppose que :
 - (a) Aucune des $\varphi(k)$ fonctions de Dirichlet $L(s, \chi)$ ne s'annulle dans l'intervalle]0, 1].
 - (b) Il existe $\rho \in Z(k)$ d'ordre de multiplicité composé $m_{\rho,l}$ non nul. Alors les fonctions réelles R(x, k, l) et J(x, k, l) changent de signe une infinité de fois.
- 2. Pour $k \in \{1, 2, ..., 13, 14, 18, 22, 26\}$ et $1 \le l \le k$ avec (l, k) = 1 les fonctions R(x, k, l) et J(x; k, l) changent de signe une infinité de fois.

Démonstration.

1. Inspirée de ([4] pages 384–385) et en utilisant le théorème de Landau ([3] page 191). On considère, pour $\Re(s) > 1$, les fonctions à variables complexe suivantes :

$$G(s) = \int_{2}^{+\infty} \frac{R(x; k, l)}{x^{s+1}} dx \quad \text{et} \quad H(s) = \int_{2}^{+\infty} \frac{J(x; k, l)}{x^{s}} dx.$$

D'après [1] page 83, la fonction G(s) se prolonge dans tout le plan complexe en une fonction méromorphe :

$$G(s) = -\frac{1}{\varphi(k)} \sum_{\rho \in \widehat{Z}(k)} \frac{m_{\rho,l}}{\rho(s-\rho)} + \frac{1}{\varphi(k)} \sum_{\chi \in \widehat{G}(k)} \overline{\chi}(l) \sum_{n=1}^{+\infty} \frac{1}{(2n+a)(s+2n+a)} - \frac{1}{\varphi(k)} \sum_{\chi \in \widehat{G}(k)} \left\{ \frac{\overline{\chi}(l)}{s(s+a)} \right\} + \frac{E(s)}{s}$$

$$(1)$$

où $a = (\chi(1) - \chi(-1))/2$ et E(s) est une fonction entière.

Soient $\delta = \min_{\rho \in Z(k)}(|\Im(\rho)|) > 0$ et W_{δ} l'ouvert simplement connexe :

$$W_{\delta} = \left\{ s \in \mathbb{C} \text{ tel que } \Re(s) > 1 \right\} \cup \left\{ s \in \mathbb{C} \text{ tel que } 0 < \Re(s) \leqslant 1 \text{ et } \left| \Im(s) \right| < \delta \right\}.$$

La formule (1) et les hypothèses (a) et (b) impliquent que la fonction G(s) est analytique dans W_{δ} et possède au moins un pôle simple dans le demi plan $\Re(s) > 0$. Alors, d'après le théorème de Landau, la fonction R(x; k, l) oscille indéfiniment autour de 0. En évaluant H(s) par parties, on obtient

$$H(s) = \frac{h(s)}{s-1} \quad \text{avec } h(s) = G_1(s) - G_2(s) + h_1(s)$$
 (2)

où $G_1(s)$ et $G_2(s)$ sont respectivement la première et la deuxième primitive de G(s) dans W_δ , $h_1(s)$ une fonction entière et h(1)=0. Cela prouve que H(s) se prolonge en une fonction sans singularité sur le segment $0<\sigma\leqslant 1$. Supposons que J(x;k,l) garde un signe constant pour x assez grand. Alors d'après le théorème de Landau la fonction H(s) serait analytique dans le demi plan $\Re(s)>0$ ce qui impliquerait, d'après la formule (2), que les fonctions $G_1(s)-G_2(s)$ et $G_1''(s)-G_2''(s)$ sont aussi analytiques dans le demi plan $\Re(s)>0$. Or, ceci est impossible, car d'après l'hypothèse (b) et la formule (1), la fonction G(s) possède un pôle simple ρ dans le demi plan $\Re(s)>0$ et au voisinage de ρ on a

$$G_1''(s) - G_2''(s) = G'(s) - G(s) \sim \frac{m_{\rho,l}}{\varphi(k)} \times \frac{(1+s-\rho)}{\rho(s-\rho)^2} \quad (m_{\rho,l} \neq 0).$$

2. D'après [5] (les tables des zéros des fonctions de Dirichlet), pour chaque valeur de k citée, il existe $\rho_k \in \widehat{Z}(k)$ tel que $m_{\rho_k,l} \neq 0$. ρ_k est celui de partie imaginaire positive minimale.

$$\rho_1 = \rho_2 = \frac{1}{2} + i14,134725, \quad \rho_3 = \rho_6 = \frac{1}{2} + i8,039737, \quad \rho_4 = \frac{1}{2} + i6,020948, \quad \rho_5 = \rho_{10} = \frac{1}{2} + i4,132903, \quad \rho_7 = \rho_{14} = \frac{1}{2} + i2,509374, \quad \rho_8 = \frac{1}{2} + i3,576154, \quad \rho_9 = \rho_{18} = \frac{1}{2} + i2,901994, \quad \rho_{11} = \rho_{22} = \frac{1}{2} + i1,231188, \quad \rho_{12} = \frac{1}{2} + i3,804627, \quad \rho_{13} = \rho_{26} = \frac{1}{2} + i0,883960.$$
 Les conditions (a) et (b) sont alors satisfaites d'où l'assertion annoncée.

3. Démonstration du théorème

- 1. Le Lemme 1 implique $\limsup_{n\to+\infty} \{g_{k,l}^*(n)\} = P_{k,l} \times a_{k,l} \times \exp\{\lim_{x\to+\infty} \{\beta(x;k,l) + u(x)\}\}$. D'après le théorème des nombres premiers dans les progressions arithmétiques, on a $\lim_{x\to+\infty} \{\beta(x;k,l) + u(x)\} = 0$ d'où la première assertion du théorème.
- 2. On a $\beta(x;k,l) + u(x) = -J(x;k,l) + D(x;k,l) + u(x)$ avec D(x;k,l) + u(x) > 0. Alors pour tout $n = N_{k,l}(x)$, on a $g_{k,l}^*(n) > P_{k,l} \times a_{k,l} \times \exp\{-J(x;k,l)\}$ et d'après le Lemme 2, -J(x;k,l) > 0 une infinité de fois, d'où l'existence d'une infinité de nombres n tels que $\sigma_{k,l}^*(n) > P_{k,l} \times a_{k,l} \times (\ln(\varphi(k) \ln n))^{1/\varphi(k)}$.
- 3. Pour les valeurs de k citées et les nombres l correspondants les conditions (a) et (b) sont satisfaites donc la proposition (P) est vraie pour ces valeurs de k.
 - 4. Par calcul direct sur ordinateur nous obtenons les valeurs :

$$P_{3,1} = 0.96710408..., P_{3,2} = 0.70718137....$$

Les nombres $a_{k,l}$ sont explicités dans [6] Théorème 1 page 356. Pour k=3 on a les valeurs :

$$a_{3,1} = ((2\sqrt{3}\pi \times P_{3,2} \times e^{\gamma})/27)^{1/2} = 0.712515...,$$
 $a_{3,2} = ((8\sqrt{3}\pi P_{3,1} \times e^{\gamma})/27)^{1/2} = 1.666463....$

D'après [2] page 114, on a pour $x \ge 25000$

$$|S(x; 3, l)| < 0.524 \times \frac{x}{2 \ln x}$$
 uniforme pour $l = 1, 2$

cela nous permet d'obtenir les majorations suivantes :

$$\begin{split} -K(x;3,l) &< \frac{0,524}{2} \times \frac{1+\ln x}{\ln^2 x}, \qquad \frac{(S(x;3,l))^2 g(\xi)}{2} < \frac{(0,524)^2 \times (2,422+\ln x)}{4 \ln^4 x}, \\ u(x;3,l) &< \frac{1}{2} \sum_{p>x, \ p\equiv l(3)} \frac{1}{p^2} \leqslant \frac{(1+3\times 0,524)}{2x \ln x}. \end{split}$$

Alors, d'après l'assertion 1 du Lemme 1, pour tout nombre $n \ge N_{3,l}(x)$ $(x \ge 25\,000)$, on a :

$$g_{3,l}^*(n) \le P_{3,l} \times a_{3,l} \times \exp\left(\frac{0.524(1+\ln x)}{2\ln^2 x} + \frac{(0.524)^2 \times (2.422+\ln x)}{4\ln^4 x} + \frac{(1+3\times0.524)}{2x\ln x}\right).$$

Il en vient:

$$g_{3,1}^*(n) < 0.7091$$
 pour $n \ge N_{3,1}(25\,000)$, $N_{3,1}(25\,000) = 7 \times 13 \times 19 \times \cdots \times 24\,979$ $(p \equiv 1(3))$, $g_{3,2}^*(n) < 1.2126$ pour $n \ge N_{3,2}(25\,000)$, $N_{3,2}(25\,000) = 2 \times 5 \times 11 \times \cdots \times 24\,989$ $(p \equiv 2(3))$.

Pour les nombres n tels que $n \le N_{3,l}(25\,000)$ on a vérifié les inégalités de l'assertion par calcul direct sur ordinateur pour les nombres $N_m \le N_{3,l}(25\,000)$ tout en tenant compte de la première assertion du Lemme 1.

Références

- [1] H. Davenport, Multiplicative Number Theory, second ed., revised by Hugh L. Montgomery, Springer-Verlag, New York, 1980.
- [2] P. Dusart, Autour de la Fonction π, thèse de doctorat de l'université de Limoges en Mathématiques appliquées et théorie des nombres, juin 1998.
- [3] W.J. Ellison, M. Mendes-France, Les Nombres Premiers, Actualités scientifiques et industrielles, vol. 1366, Hermann, Paris, 1975.
- [4] J.-L. Nicolas, Petites valeurs de la fonction d'Euler, Journal of Number Theory 17 (1983) 375–388.
- [5] R. Rumely, Numerical computations concerning the ERH, Mathematics of Computation 62 (1993) 415–440.
- [6] K.S. Williams, Mertens' theorem for arithmetic progressions, Journal of Number Theory 6 (1974) 353–359.