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Abstract

For a smooth geometrically integral algebraic variety X over a field k of characteristic 0, we define the extended Picard complex
UPic(X). It is a complex of length 2 which combines the Picard group Pic(X) and the group U (X) := k[X]*/k*, where k is
a fixed algebraic closure of k and X = X xj k. For a connected linear k-group G we compute the complex UPic(G) (up to a
quasi-isomorphism) in terms of the algebraic fundamental group 71 (G). We obtain similar results for a homogeneous space X of
a connected k-group G. To cite this article: M. Borovoi, J. van Hamel, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Complexes de Picard étendus pour des groupes algébriques et des espaces homogenes. Soient k un corps de caractéristique
zéro et X une k-variété algébrique lisse et géométriquement intégre. Nous définissons le complexe de Picard étendu UPic(X). C’est
un complexe de longueur 2 qui combine le groupe de Picard Pic(X) et le groupe U (X) := k[X]* /k*, ol k est une cloture algé-
brique fixée de k et X = X x k. Pour un k-groupe linéaire connexe G, nous calculons le complexe UPic(G) (2 quasi-isomorphisme
prés) en termes du groupe fondamental algébrique 71 (G). Nous obtenons des résultats similaires pour un espace homogéne X d’un
k-groupe connexe G. Pour citer cet article : M. Borovoi, J. van Hamel, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Throughout the Note, k denotes a field of characteristic 0 and & is a fixed algebraic closure of k. By a k-group we
mean a linear algebraic group defined over k.
Let G be a connected reductive k-group. Let

p:G* - G¥— G

be Deligne’s homomorphism, where G** is the derived subgroup of G (it is semisimple) and G*¢ is the universal
covering of G (it is simply connected). Let T C G be a maximal torus (defined over k) and let 75 := p~!(T') be the
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corresponding maximal torus of G*¢. The 2-term complex of tori

YNy

(with T%¢ in degree —1) plays an important role in the study of the arithmetic of reductive groups. For example,
the Galois hypercohomology H'(k, T° — T) of this complex is the abelian Galois cohomology of G (cf. [1]). The
corresponding Galois module

X (T)/p:X(T*)

(where X, denotes the cocharacter group of a torus) is called the algebraic fundamental group 7 (G) (loc. cit.). The
related complex group with holomorphic Gal(k/ k)-action

Hom(rr; (G ), C*) = ker(X*(T) ® C* — X*(T*) ® C*)

(where X* denotes the character group of an algebraic group) is canonically isomorphic to the center of a connected
Langlands dual group G for G, considered by Kottwitz [7].

Clearly, the above constructions rely on the linear algebraic group structure of G. However we show in this
note that they are related to a very natural geometric/cohomological construction that works for an arbitrary smooth
k-variety X. The proofs will be published elsewhere.

1. The extended Picard complex

By a k-variety we mean a smooth geometrically integral k-variety. If X is a k-variety, we write X for X x; k. We
write k[ X] (resp. k(X)) for the ring of regular iunctions (resp. the field of rational functions) on X.
For a k-variety X, consider the cone UPic(X) of the morphism

Gm(k) > t< 1R (X, Gny)
in the derived category of discrete Galois modules. More explicitly, this cone is represented by the 2-term complex
k(X)* /k* — Div(X)
(with k(X )</ k* in degree 0), where Div denotes the divisor group. It follows from the definitions that the cohomology
groups H' of the complex UPic(X) vanish for i # 0, 1, and
HO(UPic(X)) =U(X ) :=k[X]"/k*,  H'(UPic(X)) = Pic(X).
Hence UPic(X) can be regarded as a 2-extension of Pic(X) by U (X). We shall call this complex the extended Picard
complex of X.
Lemma 1.1. Let X, be a smooth compactification of a k-variety X. Then there is a distinguished triangle
UPic(X ) — Divy, (X ) = Pic(Xc) — UPic(X )[1]

where DiVYC\Y()_( ) is the permutation module of divisors in the complement of X in X..

Now we consider Pic(X) = H'(X, Gy) and Br(X) = Hézt(X , Gm) (over k). Consider the canonical homomor-
phisms Br(k) 2 Br(X) i> Br(X) and set Bry(X) = ker 8/ima.
Lemma 1.2. Let X be a k-variety.
(i) There is a natural injection Pic(X) — H'(k, UPic(X)), w_hich is an isomorphism if X (k) # 0.
(ii) There is a natural injection Bry(X) — H?(k, UPic(X)), which is an isomorphism if X(k) # & or if
H3(k,Gn) =0 (e.g. when k is a number field).

If C is a complex of Gal(lg/k)-modules, we write Hlfu(k, C)=ker[H! (k,C) — ]_[V Hi(y, C)] where y runs over
all closed procyclic subgroups of Gal(k/ k).
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Proposition 1.3. Let X, be a smooth compactification of a smooth k-variety X. The triangle of Lemma 1.1 gives rise
to an isomorphism

111, (k, Pic(X.)) — III2 (k, UPic(X )).

This is particularly interesting for a homogeneous variety X of a connected k-group G with connected geometric
stabilizer, for which we have I_Hi) (k, Pic(X,)) = H'(k, Pic(X,)), see [4].

2. Algebraic groups and torsors
Let G be a connected reductive k-group. We define the dual complex 71(G)? to 71 (G) by
T (E)D = (X*(T) — X*(T*)) (with X*(T) in degree 0).

Theorem 2.1. For a connected reductive k-group G there is a canonical, functorial in G isomorphism (in the derived
category of discrete Galois modules)

UPic(a) AN T (E)D

Let G be any connected linear k-group, not necessarily reductive. We write G" for the unipotent radical of G, and
set G = G/G" (it is reductive). We define 71 (G) := 71 (G™9).

Corollary 2.2. For any connected linear k-group G we have a canonical isomorphism UPic(G) = 11(G)P.

Combining Corollary 2.2 with Lemma 1.2, we find a new proof of the following result.

Corollary 2.3 (Kottwitz [7]). For any connected linear k-group G we have canonical isomorphisms Pic(G) =
H'(k, 71(G)P) and Bry(G) — H?(k, 11 (G)).

Theorem 2.1 gives a description of the complex UPic for a k-torsor as well, thanks to the following result which is
a straightforward generalization of [§, Lemme 6.7]).

Proposition 2.4. Let G be a connected linear k-group and let X be a k-torsor under G. There is a canonical isomor-
phism UPic(X) — UPic(G), functorial in G and X, in the derived category of discrete Galois modules.

Combining the fact that chlo (k, Pic(X,)) = H'(k, Pic(X,)) for any smooth compactification X, of a k-torsor X
under G (cf. [3]) with Proposition 1.3, Proposition 2.4, and Corollary 2.2, we obtain a new proof of the following
result.

Corollary 2.5 (Borovoi—Kunyavskii [2]). With G and X as above, H' (k, Pic(X,)) = 1112 (k, 71 (G)P).
3. Homogeneous spaces

Let G be a connected k-group such that Pic(@l: 0 (i.e. (G™9)s s simply connected). Let X be a homogeneous
space of G defined over k. Let x € X (k),_and let H be the stabilizer of X in G. Then Gal(k/k) acts on X*(H). We do
not assume that X has a k-point or that H is connected.

Theorem 3.1. For G and X as above, there is an isomorphism
UPic(X ) — (X*(G) — X*(H)) (with X*(G ) in degree 0)
in the derived category of discrete Galois modules. In particular, there is an exact sequence

0—>U(X)—>X*(G)—> X*(H) — Pic(X) — 0.
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The exact sequence of Theorem 3.1 generalizes an exact sequence of Fossum-Iversen [6, Proposition 3.1] and
Sansuc [8, Proposition 6.10]. Note that the requirement Pic(G) = 0 is nota serious restriction, since for any connected
k-group G we can find a surjective homomorphism G’ — G with Pic(G’) = 0.

Corollary 3.2. For G and X as above there are injections Pic(X) — H'(k,X*(G) — X*(H)) and Bry(X) —
H?(k,X*(G) — X*(H)), which are isomorphisms if X (k) 0.

The corollary follows from Theorem 3.1 and Lemma 1.2.
4. The elementary obstruction

Let X be a k-variety. We have an extension of complexes of Galois modules
0—k* — (k(X)* - Div(X)) — (k(X)™/k* — Div(X)) — 0.

It defines an element e(X) € Ext! (UPic(X), k*). If X has a k-point, then this extension splits (in the derived category),
hence e(X) = 0. By slight abuse of terminology we call this class e(X) the elementary obstruction to the existence of
a k-point in X (cf. [5, Définition 2.2.1 and Proposition 2.2.4]).

When X is a k-torsor under a k-group G, Proposition 2.4 and Theorem 2.1 give us that UPic()_( Yy =m1(G)P. We
obtain

Ext! (UPic(X), k%) = H' (k, Hom(m; (G ), £%)) = H' (k, X (T*) @ K% — X.(T) @ k*) = H' (k, T — T)

(where T*¢ is in degree —1). The abelian group H} (k, G) := H'(k, T*° — T) is called the first abelian Galois
cohomology group of G, and in [1] an abelianization map ab': H!(k, G) — Halb(k, G) was constructed. Here we
compute the elementary obstruction e(X) € Halb (k, G) in terms of the cohomology class cl(X) € H Lk, G).

Theorem 4.1. Let X be a k-torsor under a connected k-group G. With the above notation we have ¢(X) = ab' (cl1(X))
(up to sign).
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