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Abstract

We investigate the Neumann problem for a nonlinear elliptic operator of Leray–Lions type in Ω(s) = Ω\F(s), s = 1,2, . . . ,
where Ω is a domain in Rn (n � 3), F(s) is a closed set located in the neighborhood of a (n − 1)-dimensional manifold Γ lying
inside Ω . We study the asymptotic behavior of u(s) as s → ∞, when the set F(s) tends to Γ . To cite this article: M. Sango, C. R.
Acad. Sci. Paris, Ser. I 342 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Problème de Neumann pour une équation élliptique non lineaire dans un domaine perforé. Nous étudions le problème de
Neumann pour un opérateur élliptique de type Leray–Lions dans un domaine Ω(s) = Ω\F(s), s = 1,2, . . ., où Ω est un ouvert
dans Rn (n � 3), F(s) est un ensemble fermé situé au voisinage d’une variété differentiable Γ de dimension (n − 1) à l’intérieur
de Ω . Nous étudions the comportement asymptotique de u(s) quand F(s) converge vers Γ dans un sens approprié. Pour citer cet
article : M. Sango, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version française abrégée

Soit Ω est un ouvert dans Rn (n � 3), F (s), s = 1,2, . . ., est un ensemble fermé situé au voisinage d’une variété Γ

de dimension (n − 1) à l’intérieur de Ω qui divise Ω en deux domaines disjoints Ω+et Ω−. Dans le domaine perforé
Ω(s) = Ω\F (s), nous étudions le problème aux limites

Au(s) = −
n∑

i=1

∂

∂xi

(
ai

(
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∂u(s)

∂x

))
= f, dans Ω(s),
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u(s) = 0 sur ∂Ω,
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où ν est un vecteur normal à ∂F (s), f et A sont une fonction et un opérateur assujettis à des conditions définies dans
la suite. Nous démontrons sous des hyphotèses appropriées que lorsque s → ∞, la suite u(s) de solutions du problème
converge dans des topologies convenables vers une solution du problème de transmission

−
n∑

i=1

∂

∂xi

(
ai

(
x,

∂u

∂x

))
= f, dans Ω\Γ,

(
∂u

∂νA

)
+

+
(

∂u

∂νA

)
−

= pc(x)|u+ − u−|p−2(u+ − u−) sur Γ,

u = 0 sur ∂Ω.

Le paramètre p et la fonction c sont définis dans la suite.

1. Introduction

Let Ω be a bounded domain in Rn (n � 3) with a sufficiently smooth boundary ∂Ω . Let F (s) be a closed set in
Ω depending on the parameter s running throughout the set of natural numbers. The main assumption on the set F (s)

is that as s → ∞, F (s) is located in an arbitrary small neighborhood of some smooth manifold Γ without boundary
which lies inside Ω and partition Ω into two subdomains Ω+(the interior) and Ω−(the exterior). In the domain
Ω(s) = Ω\F (s) that we assume sufficiently smooth, we investigate the sequence of solutions u(s) of the boundary
value problem

Au(s) = −
n∑

i=1

∂

∂xi

(
ai

(
x,

∂u(s)

∂x

))
= f, in Ω(s), (1)

∂u(s)

∂νA

=:
n∑

i=1

ai

(
x,

∂u(s)

∂x

)
cos(ν, xi) = 0, on ∂F (s), (2)

u(s) = 0, on ∂Ω, (3)

where ν is a normal vector to ∂F (s), f is a function defined and compactly supported inside Ω (the support of f does
not intersect Γ ), A :W 1

p(Rn) → W 1
p′(Rn) is a monotone operator satisfying appropriate conditions.

The aim of the present Note is to investigate the behavior of the sequence u(s) of solutions of the problem (1)–(3).
Under more precise restrictions on the set F (s), we show that u(s) converges in suitable topologies to a solution of a
limit problem that we derive explicitly.

The rise of interest in Neumann problems in complicated domains in the last two decades was generated by the
work of Sanchez-Palencia [9] related to perforated plane structures; commonly known now as Neumann sieve. Related
works can be found in [2–4,7]. The problem (1)–(3) was originally studied by Marchenko, Khruslov and their co-
workers mainly in the linear case, i.e., when ai is independent of u (see [5]). The present work is concerned with the
nonlinear case. Unlike most of the papers mentioned in the previous paragraph, the perforated domain considered here
has a rather general structure.

We shall use the following well-known Lebesgue and Sobolev spaces Lp(·), W 1
p(·), W̊ 1

p(·) (p � 1). We denote by

W−1
p′ (·) the dual of W̊ 1

p(·) where p′ is the Hölder conjugate of p, i.e., p−1 + p′−1 = 1. If ξ is a vector we denote its
Euclidean norm by |ξ |. We denote by C all generic constants independent of s and depending only on the data.

We assume for simplicity that 2 � p < n − 1 and that Eq. (1) is the Euler–Lagrange equation for the functional

I (v) =
∫

Ω(s)

[
Ai

(
x,

∂v

∂x

)
∂v

∂xi

− f v

]
dx,

where the functions Ai(x, ξ), ξ = (ξ1, . . . , ξn) are Caratheodory and satisfy
A. for all x ∈ Ω\Ω , t ∈ R and ξ ∈ Rn, Ai(x, tξ) = |t |p−2tAi(x, ξ),
B. there exist two positive constants c1 and c2 such that for all ξ, η ∈ Rn with ξ = (ξi), η = (ηi), i = 1, . . . , n,
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n∑
i=1

(
Ai(x, ξ) − Ai(x, η)

)
(ξi − ηi) � c1|ξ − η|p, (4)∣∣Ai(x, ξ) − Ai(x, η)

∣∣ � c2
(|ξ |p−2 + |η|p−2)|ξ − η|. (5)

Therefore ai(x, ξ) = ∑n
k=1 ξk∂Ak(x, ξ)/∂ξi + Ai(x, ξ). Hence any minimizer of the functional I in W 1

p(Ω(s)) ∩
W̊ 1

p(Ω) which satisfies the boundary condition (2)–(3) is a weak solution of (1)–(3), the existence of which under the
above conditions is well-known.

We introduce some notations. Let γ be an arbitrary open set on Γ and let T (γ, δ) be a layer of thickness 2δ

centered around γ . We denote by γ ±
δ the bases of the layer T (γ, δ), i.e., the surfaces located at the different sides of

γ at distance δ. We set T (γ, δ, s) = T (γ, δ)\F (s). Let W(γ, δ, s) = {v ∈ W 1
p(T (γ, δ, s)): v(x) = 1 on γ +

δ , v(x) = 0

on γ −
δ }. The main characteristic of influence of the sets F (s) is expressed in term of the following functions of sets

CA(γ, δ, s) = inf
ϕ(s)

∫
T (γ,δ,s)

n∑
i=1

Ai

(
x,

∂ϕ(s)

∂x

)
∂ϕ(s)

∂xi

dx, (6)

where infimum is taken over the functions ϕ(s) ∈ W(γ, δ, s). These quantities are referred to as A-conductivity of the
set T (γ, δ, s), following Mazya [6] where they are thoroughly investigated.

Setting φ(x) = u(s)(x) in the variational formulation of problem (1)–(3) we get∥∥u(s)
∥∥

W 1
p(Ω(s))

� C. (7)

We have Ω(s) = Ω(s)− ∪ Ω(s)+ ∪ Γ , where Ω(s)± = Ω(s) ∩ Ω±. Thus u(s) ∈ W 1
p(Ω(s)+ ∪ Ω(s)−); i.e., that there

exist the functions u(s)± ∈ W 1
p(Ω(s)±) such that u(s) = (u(s)+, u(s)−) and ‖u‖W 1

p(Ω(s)+∪Ω(s)−) =: ‖u‖W 1
p(Ω(s)+) +

‖u‖W 1
p(Ω(s)−). Analogously W 1

p(Ω+ ∪ Ω−) =: W 1
p(Ω+) × W 1

p(Ω−) with the norm ‖u‖W 1
p(Ω+∪Ω−) =: ‖u‖W 1

p(Ω+) +
‖u‖W 1

p(Ω−).

We make the following hypothesis: The domains Ω(s)± are such that for all s there exists a uniformly bounded
extension operator from W 1

p(Ω(s)+ ∪Ω(s)−) into W 1
p(Ω+ ∪Ω−). In the sequel a function u(s) in W 1

p(Ω(s)+ ∪Ω(s)−)

and its extension in W 1
p(Ω+ ∪ Ω−) will be denoted by the same symbol.

2. Main result

The main result of this Note is:

Theorem 1. Assume that the above conditions on problem (1)–(3) are satisfied and f ∈ W−1
p′ (Ω\Γ ). As s → ∞, we

require that

(a) the set F (s) lies in an arbitrary small neighborhood of the manifold Γ ⊂ Ω ,
(b) for any portion γ ∈ Γ , there exist the limits

lim
δ→∞ lims→∞CA(γ, δ, s) = lim

δ→∞ lims→∞CA(γ, δ, s) =
∫
γ

c(x)dΓ, (8)

where c is a nonnegative, measurable function on Γ .

Then the sequence of solutions u(s) of problem (1)–(3) converges weakly in W 1
p(Ω+ ∪ Ω−) and strongly in

W 1
q (Ω+ ∪ Ω−), 1 < q < p, to a function u which is a solution of the transmission problem

−
n∑

i=1

∂

∂xi

(
ai

(
x,

∂u

∂x

))
= f, in Ω\Γ, (9)(

∂u

∂νA

)
+

+
(

∂u

∂νA

)
−

= pc(x)|u+ − u−|p−2(u+ − u−), on Γ, (10)

u = 0, on ∂Ω, (11)
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where the signs + and − indicate the boundary values of the function on the different sides of Γ , ( ∂u
∂νA

)± is the
derivative along the normal to Γ in the direction corresponding to ±.

Let T (Γ, δ) be a layer of thickness 2δ centered around the manifold Γ . Let T (Γ, δ, s) = T (Γ, δ)\F (s). We consider
the functional

Φ
(s)
δ

(
ψ(s)

) =
∫

T (Γ,δ,s)

n∑
i=1

Ai

(
x,

∂ψ(s)

∂x

)
∂ψ(s)

∂xi

dx,

over the set W̃ of functions from W 1
p(T (Γ, δ, s)) taking on the surfaces Γ +

δ , Γ −
δ bounding the layer T (Γ, δ) the

values of u(x) ∈ W 1
p(Ω+ ∪ Ω−). It is a well known fact that under the growth conditions on Ai , there exists at least

a function u(s) minimizing Φ
(s)
δ , i.e.,

Φ
(s)
δ

(
u(s)

) = inf
ψ(s)∈W̃

Φ
(s)
δ

(
ψ(s)

)
.

The following key result holds:

Theorem 2. Assume that the conditions of Theorem 1 are satisfied. Then for any function u ∈ W 1
p(Ω+ ∪ Ω−) the

following relation holds

lim
δ→0

lims→∞Φ
(s)
δ (u) = lim

δ→0
lims→∞Φ

(s)
δ (u) =

∫
Γ

c|u+ − u−|p dΓ.

This theorem gives an accurate behavior of the energy in the vinicity of the sets F (s) and is responsible for the
appearance of the additional term in the transmission conditions.

3. Proof of Theorem 1

We give an idea of the proof of Theorem 1. From (7) and the existence of the extension assumed in the theorem
it follows that ‖u(s)‖W 1

p(Ω+∪Ω−) � C. Therefore a function u ∈ W 1
p(Ω+ ∪ Ω−) exists such that u(s) converges to

uweakly in W 1
p(Ω+ ∪ Ω−). In fact following the arguments of Boccardo and Murat [1] we get a more precise con-

vergence, namely u(s) strongly converges to u in W 1
q (Ω+ ∪ Ω−), 1 < q < p. Let u± be the restriction of u to Ω±

δ .
We show that u± satisfies the relation∫

Ω±
δ

n∑
i=1

Ai

(
x,

∂u±

∂x

)
∂ϕ

∂xi

dx =
∫

Ω±
δ

f ϕ dx, ∀ϕ ∈ W̊ 1
p

(
Ω±

δ

)
.

Using this relation together with the conditions (4)–(5) on A(x, ξ) and some appropriate estimates we get that

u(s) → u±, strongly in W̊ 1
p

(
Ω±

δ

)
. (12)

Next we let w ∈ W̊ 1
p(Ω+ ∪Ω−) be arbitrary and define the function w

(s)
δ by: w

(s)
δ (x) = w(x) if x ∈ Ω±

δ and w
(s)
δ (x) =

w(s)(x) if x ∈ T (Γ, δ), where w(s) ∈ W 1
p(Ω(s)) and is a minimizer of Φ

(s)
δ in W 1

p(T (Γ, δ, s)). Let

J (w) =
∫

+ −

[
n∑

i=1

Ai

(
x,

∂w

∂x

)
∂w

∂xi

+ f w

]
dx +

∫
c(x)|w+ − w−|p dΓ, (13)
Ω ∪Ω Γ
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be a functional on W̊ 1
p(Ω+ ∪Ω−), the class of functions in W 1

p(Ω+ ∪Ω−) which vanish on ∂Ω . Under the conditions

imposed on the functions Ai(x,p), (x,p) ∈ R2n, any minimizer of the functional J in W̊ 1
p(Ω+ ∪ Ω−) is also a weak

solution of problem (9)–(11). We prove that the function u minimizes J in W̊ 1
p(Ω+ ∪ Ω−). We have

I
(
w

(s)
δ

) =
∫

Ω+
δ ∪Ω−

δ

[
n∑

i=1

Ai

(
x,

∂w

∂x

)
∂w

∂xi

+ f w

]
+ Φ

(s)
δ (w).

By Theorem 2 we get

lim
δ→0

lims→∞I
(
w

(s)
δ

) = J (w). (14)

Next let u
(s)
δ ∈ W̊ 1

p(Ω+ ∪ Ω−) be an extension of u(s) from Ω+
δ ∪ Ω−

δ to Ω+ ∪ Ω− such that u
(s)
δ → u strongly in

W̊ 1
p(Ω+ ∪ Ω−) as δ → 0, s → ∞. We have

I
(
u(s)

) =
∫

Ω+
δ ∪Ω−

δ

[
n∑

i=1

Ai

(
x,

∂u
(s)
δ

∂x

)
∂u

(s)
δ

∂xi

+ f u
(s)
δ

]
+ Φ

(s)
δ

(
u

(s)
δ

)
.

By Theorem 2 and estimates involving (4), (5) and (12) we get

lim
δ→0

lim
s→∞

I
(
u(s)

)
� J (u). (15)

We have I (u(s)) � I (w
(s)
δ ). Thus (14) and (15) imply that J (u) � J (w). w being arbitrary we get that u minimizes J

and therefore satisfies (9)–(11).
Next we give an example of a geometry for F (s) for which the function c in (8) can be explicitly computed. In Rn,

we consider for each s a layer T (s) of thickness h(s) bounded from one side by a sphere Γ and from the other side
by another sphere Γ (s) parallel to Γ and at a distance h(s) from it. We remove from Γ s disjoint connected open
sets σi = σ

(s)
i of diameter d

(s)
i . The normals through the points x ∈ σi , cut some channels T

(s)
i through T (s). Set

F (s) = T (s)\⋃s
i=1 T

(s)
i . Let Ω be smooth bounded domain in Rn containing T (s). In the region Ω(s) = Ω\F (s), we

consider the boundary value problem

�pu(s) = −
n∑

j=1

∂

∂xj

(∣∣∣∣∂u(s)

∂x

∣∣∣∣p−2
∂u(s)

∂xj

)
= f, x ∈ Ω(s), (16)

∂u(s)

∂ν�p

= 0, on ∂F (s), u = 0 on ∂Ω. (17)

We denote by Ω+ (Ω−) the region interior (exterior) to Γ and by Ω(s)− the set Ω(s)\Ω−. Through appropriate
rescalings the arguments of [8, §4] related to the construction of extension operator for perforated domains of type I
can be used to produce an extension from W 1

p(Ω(s)−) into W 1
p(Ω−) uniformly bounded. Hence the required extension

from W 1
p(Ω(s)+ ∪ Ω(s)−) into W 1

p(Ω+ ∪ Ω−) follows. Let γ be a portion of the surface Γ and T (γ, δ) be the layer

with thickness 2δ centered around γ with bases γ ±
δ . We define the quantity

C�p(γ, δ, s) = 1

p
inf
w(s)

∫
T (γ,δ,s)

∣∣∣∣∂w(s)

∂x

∣∣∣∣p dx, (18)

where T (γ, δ, s) = T (γ, δ)\T (s)\⋃s
i=1 T

(s)
i , and the infimum is taken over the functions w(s) ∈ W(γ, δ, s). We de-

note T
(s)
i ∩Γ and T

(s)
i ∩Γ (s) by σ

(s)−
i and σ

(s)+
i , respectively. Let R

(s)
i be the distance between σ

(s)−
i and

⋃
i 
=j σ

(s)−
j

and assume maxi{R(s)
, d

(s)} < δ, for all s. We make the following assumptions:
i i
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lim
s→∞

∑
γ (s)

[d(s)
i ]n−1

[h(s)R
(s)
i ]p

� C2; as s → ∞R
(s)
i = o

(
d

(s)
i

) → 0;

lim
s→∞

∑
γ (s)

mes
(
σ

(s)
i

)[
h(s)

]1−p =
∫
γ

c(x)dΓ, (19)

where c(x) is a nonnegative function on Γ ,
∑

γ (s) is the sum over all i for which σ
(s)
i belong to γ ⊂ Γ and Ci are

positive constants. Then we have the following result

Theorem 3. Let the conditions (19) be satisfied and n > p + 1, then the sequence of solutions u(s) ∈ W 1
p(Ω(s)) of

problem (16)–(17) converges weakly in W 1
p(Ω+ ∪ Ω−) to a function u(x) which is a solution of the problem

�pu = f, in Ω\Γ, (20)(
∂u

∂ν�p

)
+

+
(

∂u

∂ν�p

)
−

= pc(x)|u+ − u−|p−2(u+ − u−) on Γ, u = 0 on ∂Ω, (21)

where c is the function defined in (19).
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