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Abstract

We prove that two symplectic resolutions of a nilpotent orbit closures in a simple complex Lie algebra of classical type are
related by Mukai flops in codimension 2. To cite this article: B. Fu, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Résolutions symplectiques pour les orbites nilpotentes (III). Nous montrons que deux résolutions symplectiques d’une adhé-
rence d’orbite nilpotente dans une algèbre de Lie simple complexe classique sont réliées l’une à l’autre par des flops de Mukai en
codimension 2. Pour citer cet article : B. Fu, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

A symplectic variety is a complex algebraic variety W , smooth in codimension 1, such that there exists a regular
symplectic form on its smooth part which can be extended to a global regular form on any resolution (see [1]).
A resolution π :X → W is called symplectic if the lifted regular form on X is non-degenerate everywhere. One can
show that if W is normal, then a resolution is symplectic if and only if it is crepant.

One way of constructing a symplectic resolution from another is to perform Mukai flops. This process can be
described as follows: let W be a symplectic variety and π :X → W a symplectic resolution. Assume that W contains
a smooth subvariety Y and π−1(Y ) contains a smooth subvariety P such that the restriction of π to P makes P a
P

n-bundle over Y . If codim(P ) = n, then we can blow up X along P and then blow down along the other direction,
which gives another (proper) symplectic resolution π+ :X+ → W , provided that X+ remains in our category of
algebraic varieties. The diagram X → W ← X+ is called Mukai’s elementary transformation (MET for short) over
W with center Y . A MET in codimension 2 is a diagram which becomes a MET after removing subvarieties of
codimension greater than 2.
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Conjecture 1.1. [7] Let W be a symplectic variety which admits two projective symplectic resolutions π :X → W

and π+ :X+ → W . Then the birational map φ = (π+)−1 ◦ π :X ��� X+ is related by a sequence of METs over W in
codimension 2.

Notice that since the two resolutions π,π+ are both crepant, the birational map φ is isomorphic in codimension 1.
This conjecture is true for four-dimensional symplectic varieties by the work of Wierzba and Wiśniewski ([9]) (while
partial results have been obtained in [2], see also [3]).

Examples of symplectic varieties include: (i) nilpotent orbit closures in a semi-simple complex Lie algebra and
(ii) quotient varieties C

2n/G with G < Sp(2n) a finite subgroup. Conjecture 1.1 is verified for case (ii) in [5]. The
purpose of this note is to prove the above conjecture for case (i).

Theorem 1.2. Let �O be a nilpotent orbit closure in a complex simple Lie algebra of classical type. Then any two
( proper) symplectic resolutions for �O are connected by a sequence of METs over �O in codimension 2.

2. Stratified Mukai flops

Consider the nilpotent orbit O = O[2k,1n−2k] in sln, where 2k � n. The closure �O admits exactly two symplectic
resolutions given by

T ∗G(k,n)
π−→ �O π+←−T ∗G(n − k,n),

where G(k,n) (resp. G(n − k,n)) is the Grassmannian of k (resp n − k) dimensional subspaces in C
n. Let φ be the

induced birational map T ∗G(k,n) ��� T ∗G(n − k,n).
It is shown by Namikawa ([8] Lemma 3.1) that when 2k < n, π and π+ are both small and the diagram is a flop.

This is the stratified Mukai flop of type Ak,n. When 2k = n, the birational map φ is an isomorphism.

Lemma 2.1. If n �= 2k + 1, then φ is an isomorphism in codimension 2. If n = 2k + 1, then φ is a MET over �O in
codimension 2.

Proof. The closure �O consists of orbits {O[2i ,1n−2i ]}0�i�k . The fiber of π (resp. π+) over a point in O[2i ,1n−2i ]
is isomorphic to G(k − i, n − 2i) (resp. G(n − k − i, n − 2i)). By a simple dimension count, one shows that the
complement of π−1(O) (resp. (π+)−1(O) ) is of codimension greater than 2 when n �= 2k + 1, which proves that φ

is isomorphic in codimension 2.
Now suppose that n = 2k + 1. Let Y be the nilpotent orbit O[2k−1,13] and P (resp. P +) the preimage of Y under π

(resp. π+). Then P is the subvariety{([F ], x) ∈ G(k,2k + 1) × Y | Im(x) ⊂ F ⊂ Ker(x)
}

in T ∗G(k,2k + 1) ⊂ G(k,2k + 1) × �O. The induced map P → Y makes P a P
2-bundle over Y . Similarly P + is the

subvariety{([
F+]

, x
) ∈ G(k + 1,2k + 1) × Y | Im(x) ⊂ F+ ⊂ Ker(x)

}
in T ∗G(k + 1,2k + 1). The map P + → Y makes P + a P

2-bundle over Y .
Let U = O ∪ Y , which is open in �O. The complement of π−1(U) (resp. (π+)−1(U)) is of codimension greater

than 2. Notice that the P
2-bundle P over Y is the dual of the P

2-bundle P + over Y . One deduces that the diagram
π−1(U) → U ← (π+)−1(U) is a MET over U with center P , which concludes the proof. �

Notice that the precedent proof gives an explicit description of the center of the MET, which will be used later.
Now we introduce the stratified Mukai flops of type D. Let O be the orbit O[2k−1,12] in so2k , where k � 3 is an

odd integer. Let G+
iso(k),G−

iso(k) be the two connected components of the orthogonal Grassmannian of k-dimensional
isotropic subspaces in C

2k (endowed with a fixed non-degenerate symmetric form). Then we have two symplectic
resolutions T ∗G+

iso(k) → �O ← T ∗G−
iso(k). It is shown in [8] (Lemma 3.2) that this diagram is a flop and the two

resolutions are both small.
Let φ be the induced birational map from T ∗G+

iso(k) to T ∗G−
iso(k). Then a simple dimension count shows that:

Lemma 2.2. φ is an isomorphism in codimension 2.
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3. g = sln

Let O be a nilpotent orbit in sln corresponding to the partition d = [d1, . . . , dk] and x ∈ O. Let (p1, . . . , ps) be a
sequence of integers such that di = �{j | pj � i}. Fix a flag F := {Fi} of C

n of type (p1, . . . , ps) such that xFi ⊂ Fi−1
for all i. Such a flag is called a polarization of x. Every nilpotent element has only finitely many different polarizations.

Assume that pj−1 < pj for some j . Consider the map α :Fj → Fj/Fj−2. The element x induces x̄ ∈
End(Fj /Fj−2). We define a flag F ′ by F ′

i = Fi if i �= j − 1 and F ′
j−1 = α−1(Ker(x̄)). By Lemma 4.1 [8], F ′ is

again a polarization of x with type (p1, . . . , pj ,pj−1, . . . , ps).
Let P (resp. P ′) be the stabilizer of F (resp. F ′) in G = SLn. Then we obtain two symplectic resolutions

T ∗(G/P )
π−→ �O π ′←−T ∗(G/P ′). Let φ :T ∗(G/P ) ��� T ∗(G/P ′) be the induced birational map.

Lemma 3.1. (i) If pj �= pj−1 + 1, then φ is isomorphic in codimension 2;
(ii) If pj = pj−1 + 1, then φ is a MET over �O in codimension 2.

Proof. To simplify the notations, set r = pj−1 and m = pj +pj−1. Let �F be the flag obtained from F by deleting the
subspace Fj−1, which is also obtained from F ′ by the same manner. We denote by �P ⊂ G the stabilizer of �F . Let X be
the subvariety in G/�P × �O consisting of the points (�E,y) such that (i) y �Ei ⊂ �Ei−1 for i �= j − 1 and y �Ej−1 ⊂ �Ej−1;
(ii) the induced map ȳ ∈ End(�Ej−1/�Ej−2) satisfies ȳ2 = 0 and rank(ȳ) � r .

The projection to the second factor of G/�P × �O induces a morphism pr :X → �O. By the proof of Lemma 4.3 [8],

the resolutions π,π ′ factorize through the map pr , which gives a diagram T ∗(G/P )
µ−→X

µ′
←−T ∗(G/P ′). By

Lemma 4.3 [8], this diagram is locally a trivial family of stratified Mukai flops of type Ar,m. By Lemma 2.1, if
m �= 2r + 1, then φ is isomorphic in codimension 2, which proves claim (i).

Now assume that m = 2r + 1. Let Y be the subvariety in X consists of the points (�E,y) such that the in-
duced map ȳ ∈ End(�Ej−1/�Ej−2) has rank r − 1. By the proof of Lemma 2.1 and Lemma 4.3 [8], the diagram

T ∗(G/P )
µ−→X

µ′
←−T ∗(G/P ′) is a MET over X in codimension 2 with center Y .

Let d′ be the partition of n given by (possibly we need to re-order these parts):

d ′
i =

{
di, if i �= r, r + 2,

dr − 1, if i = r,

dr+2 + 1, if i = r + 2.

Then one can verify that the morphism pr :X → �O maps Y isomorphically to the nilpotent orbit Od′ , which shows

that the diagram T ∗(G/P )
π−→ �O π ′←−T ∗(G/P ′) is a MET in codimension 2 over �O with center Od′ . �

Notice that the precedent proof gives an explicit way to find out the MET center in �O. Here we give an example.

Example 3.2. (Example 4.6 [8]) Let O = O[3,2,1] ⊂ sl6 and x ∈ O. Then x has six polarizations Pσ(1),σ (2),σ (3) of flag
type (σ (1), σ (2), σ (3)), where σ are permutations. Let Yi,j,k = T ∗(SL6/Pi,j,k), which gives a symplectic resolution
for �O. Then Y321 ��� Y231 is a MET in codimension 2 with center O[3,13]; Y231 ��� Y213 is isomorphic in codimen-
sion 2; Y213 ��� Y123 is a MET in codimension 2 with center O[23] and so on. If a center appears twice in a sequence,
then it is not really a MET center. For example, the birational map Y321 ��� Y132 is a MET in codimension 2 with
center O[23], but over the orbit O[3,13], it is an isomorphism.

4. g = so(V ) or sp(V )

Let V be an n-dimensional vector space endowed with a non-degenerate bilinear symmetric (resp. anti-symmetric)
form for g = so(V ) (resp. g = sp(V )). Let ε = 0 if g = so(V ) and ε = 1 if g = sp(V ).

Let Pε(n) be the set of partitions d of n such that �{i | di = l} is even for every integer l with l ≡ ε (mod 2).
These are exactly those partitions which appear as the Jordan types of nilpotent elements of so(V ) or of sp(V ). Let
q be a non-negative integer such that q �= 2 if ε = 0. Define Pai(n, q) to be the set of partitions e of n such that
ei ≡ 1 (mod 2) if i � q and ei ≡ 0 (mod 2) if i > q . For e ∈ Pai(n, q), let I (e) = {j | j ≡ n + 1 (mod 2), ej ≡
ε (mod 2), ej � ej+1 + 2}.
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The Spaltenstein map S : Pai(n, q) → Pε(n) is defined as

S(e)j =



ej − 1, if j ∈ I (e),
ej + 1, if j − 1 ∈ I (e),
ej , otherwise.

It is proved in [6] that for a nilpotent element of type d, its polarization types are determined by S−1(d). For a
sequence of integers (p1, . . . , pk), we define e = ord(p1, . . . , pk) to be the partition given by ei = �{j | pj � i}.

Let O be a nilpotent orbit of type d in g and x ∈O. Let (p1, . . . , pk, q,pk, . . . ,p1) be a sequence of integers such
that e := ord(p1, . . . , pk, q,pk, . . . ,p1) is in Pai(n, q) and S(e) = d. Let F be an isotropic flag (i.e. F⊥

i = F2k+1−i ,∀i)
in V of type (p1, . . . , pk, q,pk, . . . , p1) such that xFi ⊂ Fi−1.

Assume that pj−1 < pj for some j . Consider the map α :Fj → Fj/Fj−2. The element x induces x̄ ∈
End(Fj /Fj−2). We define another flag F ′ by F ′

i = Fi if i �= j − 1,2k + 2 − j , F ′
j−1 = α−1(Ker(x̄)) and F ′

2k+2−j =
(F ′

j−1)
⊥. By Lemma 4.2 [8], F ′ is again a polarization of x. We denote by P (resp. P ′) the stabilizer of F (resp. F ′).

Then we obtain two symplectic resolutions T ∗(G/P )
π−→ �O π ′←−T ∗(G/P ′). Let φ be the induced birational map

from T ∗(G/P ) to T ∗(G/P ′).

Lemma 4.1. (i) If pj �= pj−1 + 1, then φ is isomorphic in codimension 2;
(ii) If pj = pj−1 + 1, then φ is a MET in codimension 2 over �O.

The proof goes along the same line as that in Lemma 3.1. The difference is the definition of the partition d′ in the
proof of (ii). Here we have r = pj−1 and pj = r + 1. Let e′ be the partition (after re-ordering if necessary) defined by

e′
j =

{
ej , if j �= r, r + 2,

er − 2, if j = r,

er+2 + 2, if j = r + 2.

Then e′ ∈ Pai(n, q). Now we should define d′ = S(e′). In this case, φ is a MET in codimension 2 over �O with
center Od′ .

Example 4.2. (Example 4.7 [8]) Let O = O[42,12] be the nilpotent orbit in so10. Take an element x ∈ O, then x has
four polarizations P +

3223,P
−
3223,P

+
2332,P

−
2332. Let Y+

3223 = T ∗(G/P +
3223) and so on. Then Y+

3223 ��� Y+
2332 is a MET in

codimension 2 over �O with center O[32,22].

5. Proof of Theorem 1.1

Let O be a nilpotent orbit in a classical simple Lie algebra g. By [4], every (proper) symplectic resolution for
�O is of the form T ∗(G/P ) → �O for some polarization P of O. Assume that we have two symplectic resolutions
T ∗(G/Pi) → �O, i = 1,2, then by the proof of Theorem 4.4 [8], we can reach T ∗(G/P2) → �O from T ∗(G/P1) → �O
by using the operations in Section 2.2 and 2.3, possibly by using another operation which is a locally trivial family of
stratified Mukai flops of type D (thus isomorphic in codimension 2 by Lemma 2.2). Now Lemmas 3.1 and 4.1 give
the theorem.
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