

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 342 (2006) 501-503

http://france.elsevier.com/direct/CRASS1/

Functional Analysis

Maharam's problem

Michel Talagrand

Équipe d'analyse de l'institut mathématique, université Paris VI, boîte 186, 4, place Jussieu, 75230 Paris cedex 05, France

Received 27 January 2006; accepted 30 January 2006

Available online 3 March 2006 Presented by Gilles Pisier

Abstract

We solve Maharam's problem [D. Maharam, An algebraic characterization of measure algebras, Ann. Math. 48 (1947) 154–167. [3]], also known as the Control Measure Problem. We construct a non-zero exhaustive submeasure on the algebra of clopen sets of the Cantor set that is not absolutely continuous with respect to a measure. *To cite this article: M. Talagrand, C. R. Acad. Sci. Paris, Ser. I* 342 (2006).

© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Le problème de Maharam. Nous construisons une sous-mesure exhaustive non nulle sur l'algèbre des ouverts-fermés de l'ensemble de Cantor qui n'est absolument continue par rapport à aucune mesure. Ceci résout un problème posé par D. Maharam [D. Maharam, An algebraic characterization of measure algebras, Ann. Math. 48 (1947) 154–167. [3]], en 1947, aussi connu sous le nom de problème des mesures de contrôle. *Pour citer cet article : M. Talagrand, C. R. Acad. Sci. Paris, Ser. I 342 (2006).* © 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Given a Boolean algebra \mathcal{B} of sets, a map $\nu: \mathcal{B} \to \mathbb{R}^+$ is called a *submeasure* if it satisfies the following properties:

- $(1.1) \ \nu(\emptyset) = 0,$
- (1.2) $A \subset B$, A, $B \in \mathcal{B} \Rightarrow \nu(A) \leqslant \nu(B)$,
- $(1.3) \ A, B \in \mathcal{B} \Rightarrow \nu(A \cup B) \leqslant \nu(A) + \nu(B).$

If moreover $v(A \cup B) = v(A) + v(B)$ whenever A and B are disjoint v is called a *measure*. We say that v is *exhaustive* if $\lim_{n\to\infty} v(E_n) = 0$ for each disjoint sequence (E_n) of \mathcal{B} (that is, $E_n \cap E_m = \emptyset$ if $n \neq m$). It is obvious that a measure is exhaustive. Given two submeasures v_1 and v_2 , we say that v_1 is absolutely continuous with respect to v_2 if

$$\forall \varepsilon > 0, \ \exists \alpha > 0, \ \nu_2(B) < \alpha \Rightarrow \nu_1(B) \leqslant \varepsilon.$$

In other words, for a certain function $f: \mathbb{R}^+ \to \mathbb{R}^+$ continuous at zero, we have $\nu_1(B) \leqslant f(\nu_2(B))$. If a submeasure is absolutely continuous with respect to a measure, it is exhaustive. Whether the converse is true has been a long

E-mail address: spinglass@talagrand.net (M. Talagrand).

standing classical problem of measure theory. It amount to ask whether the only reason for which a submeasure can be exhaustive is because it really looks like a measure. We show that the answer to this question is negative.

Theorem 1.1. There exists a non-zero exhaustive submeasure on the algebra \mathcal{B} of clopen sets of the Cantor set that is not absolutely continuous with respect to a measure. Moreover, there is no non-zero measure on \mathcal{B} that is absolutely continuous with respect to v.

The importance of the Control Measure Problem largely stems from the many equivalent forms that occur naturally in a variety of questions, see [2].

2. The construction

This construction elaborates on fundamental contributions by J.W. Roberts [4] and I. Farah [1].

Consider the set $T = \prod_{n \ge 1} \{1, \dots, 2^n\}$. The algebra \mathcal{B} of the clopen sets of T is isomorphic to the algebra of the clopen sets of the Cantor set $\{0, 1\}^n$. We denote by \mathcal{B}_n the algebra generated by the coordinates of rank $\le n$. For $n \ge 1$, $q \le 2^n$, we consider the set $S_{n,q} = \{y \in T; y_n \ne q\}$ and its complement $S_{n,q}^c = \{y \in T; y_n = q\}$. We set

$$\alpha(k) = \frac{1}{(k+5)^3};$$
 $N(k) = (k+6)^{1+(k+5)^3}.$

There is nothing magic about these choices, what is really required is that the sequence $\alpha(k)$ decreases fast enough and the sequence N(k) increases fast enough. For $k \ge 1$, we consider the class $\mathcal{D}_k \subset \mathcal{B} \times \mathbb{R}^+$ consisting of all couples (X, w) such that

$$X = \bigcap_{n \in I} S_{n,q(n)}, \qquad w \geqslant 2^{-k} \left(\frac{N(k)}{\operatorname{card} I}\right)^{\alpha(k)}$$

where $I \subset \mathbb{N}$, card $I \leq N(k)$ and q(n) is an arbitrary element of $\{1, \ldots, 2^n\}$. We set $\mathcal{D} = \bigcup_{k \geq 1} \mathcal{D}_k$.

For a finite subset $F = \{(A_1, w_1), \dots, (A_n, w_n)\}\$ of $\mathcal{B} \times \mathbb{R}^+$, let us set

$$\cup F = \bigcup_{\ell \le n} A_{\ell}; \qquad w(F) = \sum_{\ell \le n} w_{\ell}.$$

Given a subset \mathcal{C} of $\mathcal{B} \times \mathbb{R}^+$, we define a submeasure $\varphi_{\mathcal{C}}$ by

$$\varphi_{\mathcal{C}}(A) = \inf\{w(F); A \subset \cup F; F \subset \mathcal{C}\}.$$

Let ψ denote the submeasure $\varphi_{\mathcal{D}}$. Following Farah [1], given a submeasure θ on T, and $X \in \mathcal{B}$, we say that X is (m, n, θ) -thin if the following condition holds. For each atom A of \mathcal{B}_m , there exists a set $C \in \mathcal{B}_n$, $C \subset A$, $C \cap X = \emptyset$, with $\theta(\pi_A^{-1}(C)) \geqslant 1$, where π_A is the map $T \to A$ that send $\mathbf{y} = (y_i)_{i \geqslant 1}$ to $\mathbf{z} \in A$ given by $z_i = q_i$ for $i \leqslant m$, $z_i = y_i$ for i > m, where q_1, \ldots, q_m are such that $A = \{\mathbf{z} \in T; \forall i \leqslant m, z_i = q_i\}$. Given $X \in \mathcal{B}$ and a finite set I we say that X is (I, θ) -thin if it is (m, n, θ) -thin whenever $m < n, m, n \in I$.

Given an integer p, we proceed to the construction, by decreasing induction over k of classes $C_{k,p}$ and submeasures $\varphi_{k,p}$. For k=p, we set $C_{p,p}=\mathcal{D}$, $\varphi_{p,p}=\varphi_{\mathcal{D}}=\psi$. Having constructed $C_{k+1,p}$ and $\varphi_{k+1,p}$, we set

$$\mathcal{E}_{k,p} = \left\{ (X, w) \in \mathcal{B} \times \mathbb{R}^+; \ \exists I, \ X \text{ is } (I, \varphi_{k+1,p}) \text{-thin, } \operatorname{card} I \leqslant N(k), \ w \geqslant 2^{-k} \left(\frac{N(k)}{\operatorname{card} I} \right)^{\alpha(k)} \right\},$$

and we set $C_{k,p} = \mathcal{E}_{k,p} \cup C_{k+1,p}$, $\varphi_{k,p} = \varphi_{C_{k,p}}$.

Consider an ultrafilter \mathcal{U} on \mathbb{N} . We define the classes \mathcal{E}_k by

$$(X, w) \in \mathcal{E}_k \Leftrightarrow \{p; (X, w) \in \mathcal{E}_{k,p}\} \in \mathcal{U}.$$

We then define the classes C_k by $C_k = \mathcal{D} \cup \bigcup_{\ell \geq k} \mathcal{E}_{\ell}$, and the submeasures $\nu_k = \varphi_{C_k}$. One can then prove the following:

Theorem 2.1. For each k the submeasure v_k satisfies the requirements of Theorem 1.1.

Roughly speaking, one can say that, even though all the submeasures v_k are exhaustive this becomes harder and harder to check as k increases. Given a disjoint sequence (E_i) of \mathcal{B} , it requires the same effort (as measured by how far one has to go into the sequence (E_i)) to prove that $\limsup_{i\to\infty} v_k(E_i) \leqslant a$ whenever $a > 2^{-k}$ than to prove that $\limsup_{i\to\infty} v_k(E_i) \leqslant 2^{-k}$.

The main difficulty in the proof of Theorem 2.1 is showing that the submeasures v_k do not vanish. The main ingredient for this proof is an estimate of the type $\varphi_{k,p}(T) \geqslant C_p > 0$, which is obtained by decreasing induction over k. The proof that v_k is exhaustive follows the lines of [1]. As for the fact that v_k is not absolutely continuous with respect to any measure, this property is shared by any non-zero submeasure $v \leqslant \psi$. Indeed, such a submeasure has the property that for some a > 0 and n large enough, $v(S_{n,q}^c) \geqslant a$ for all $q \leqslant 2^n$. To see that we simply observe that for any k, any set I with card I = N(k), if for $n \in I$ we choose $q(n) \leqslant 2^n$, then

$$0 < \nu(T) < \sum_{n \in I} \nu(S_{n,q(n)}^c) + \nu\left(\bigcap_{n \in I} S_{n,q(n)}\right)$$

and the last term is $\leq 2^{-k}$, so if $2^{-k} < \nu(T)/2$, we have $\sum_{n \in I} \nu(S_{n,q(n)}^c) \geqslant \nu(T)/2$ which suffices. Also, whenever $\nu \leq \psi$, there is no non-zero measure that is absolutely continuous with respect to ν , because one can show that such a property is already true for ψ .

References

- [1] I. Farah, Example of ε -exhaustive pathological measures, Fund. Math. 181 (2004) 257–272.
- [2] D.H. Fremlin, Measure Theory, Vol. 3: Measure Algebras, second ed., Torres Fremlin, 2004.
- [3] D. Maharam, An algebraic characterization of measure algebras, Ann. Math. 48 (1947) 154–167.
- [4] J.W. Roberts, Maharam's problem, in: Kranz, Labuda (Eds.), Proceedings of the Orlicz Memorial Conference, 1991, unpublished.