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Abstract

Cut loci in geometric three-manifolds equipped with their natural metrics are an interesting source of spines with small number
of vertices. An application of this principle to lens manifolds reveals an interplay between their geometry and topology, combina-
torial types of convex hulls of group orbits, and estimates of rotation distance between certain triangulations. To cite this article:
S. Anisov, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Cut loci dans les espaces lenticulaires. Les cut loci dans les variétés géométriques de dimension 3 par rapport à leurs métriques
naturelles forment une classe remarquable d’épines. Par exemple, ces épines ont un petit nombre de sommets. En appliquant
cette idée aux espaces lenticulaires, nous étudions des rapports entre leurs géométrie et topologie, les types combinatoires des
enveloppes convexes des Zp-orbites, et des estimations de distance de rotation entre triangulations spécifiques d’un p-gone. Pour
citer cet article : S. Anisov, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version française abrégée

Nous étudions les cut loci dans les espaces lenticulaires munis de leur métrique naturelle ; c’est-à-dire, nous consi-
dérons l’espace-quotient Lp,q = S3/Zp , où la métrique riemannienne dans S3 ⊂ C2 est de courbure constante +1,
et le groupe Zp = 〈g | gp = 1〉 est engendré par la transformation linéaire suivante de C

2 : g(z,w) = (ξz, ξqw),
où pgcd(p, q) = 1 et ξ = e2π i/p . Rappelons [2,5], que le cut locus C(x) d’un point x ∈ M dans une variété riema-
nienne M est l’adhérence de l’ensemble des points y ∈ M tels que la géodésique la plus courte entre x et y n’est pas
unique.

On montre que le diamètre de Lp,q est égal à π/2. Un point x ∈ Lp,q est appelé spécial s’il existe un point y ∈ Lp,q

tel que d(x, y) = diamLp,q = π/2. Tous les autres points de Lp,q sont appelés ordinaires. On montre que tous les
points x ∈ Lp,q sont spéciaux si q = ±1 mod p, mais si q �= ±1 mod p, alors les points spéciaux forment deux cercles
dans Lp,q (on obtient donc que dans ce cas les points ordinaires forment un sous-ensemble dense de Lp,q ).
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Théorème 0.1. (a) Soit x ∈ Lp,q un point spécial. Alors C(x) est constitué d’un disque de dimension 2 et d’un
cercle S(x). Le bord du disque est collé à S(x) de façon que l’application de bord est un revêtement de degré p. Si
q = 1 ou q = p − 1, alors la monodromie de C(x) le long de S(x) soit une rotation d’angle 2π/p. Si 1 < q < p − 1,
alors la monodromie de C(x) le long de S(x) est une rotation d’angle 2πq/p ou 2πr/p (où r = q−1 mod p) suivant
que z = 0 ou w = 0 pour les préimages de x. Le cercle S(x) est l’ensemble des points situés à distance π/2 de x.

(b) Soit x ∈ Lp,q un point ordinaire. Alors C(x) est un polyèdre simple avec E(p,q) − 3 sommets, où E(p,q) =
n1 + · · · + nk est la somme des dénominateurs de la fraction continue p/q = n1 + 1/(n2 + 1/(n3 + · · · + 1/nk) . . .).
De plus C(x) a le même type combinatoire que l’épine de Lp,q construite dans [6].

Soit C̃(x) la préimage de C(x) ⊂ Lp,q dans le revêtement canonique S3 → Lp,q . La démonstration du Théo-
rème 0.1 se fait en étudiant C̃(x) ⊂ S3 ⊂ R

4. Notons que C̃(x) = V (x)∩S3, où V (x) est le diagramme de Voronoi [9]
de la préimage de x ∈ Lp,q dans S3. De plus, la décomposition cellulaire de S3 définie par C̃(x) et l’enveloppe convexe
de Zpx̃ dans R

4 sont duales. Grâce à cette dualité, il suffit d’étudier l’enveloppe convexe de la Zp-orbite d’un point
ordinaire x̃ ∈ S3.

Les considérations géométriques précédentes ont des conséquences suivantes de nature topologique et combina-
toire.

Théorème 0.2. Les cut loci dans une variété géométrique M3 (de dimension 3) par rapport à leur métrique naturelle
(ou leurs petites perturbations, dans le cas dégénéré) sont des épines simples de M3 ayant le nombre minimal de
sommets parmi les épines connues à ce jour dans au moins les deux cas suivants :

(a) c(M3) � 6, où c(·) désigne la complexité [6] ;
(b) M3 est un espace lenticulaire Lp,q .

Théorème 0.3. Soit ∆ une triangulation quelconque d’un p-gone régulier, et R2πq/p∆ l’image de ∆ par la rotation
d’angle 2πq/p.

(a) On a ρ(∆,R2πq/p∆) � E(p,q) − 3 (où la distance ρ(∆1,∆2) est définie dans [10]) ;
(b) on peut choisir une triangulation ∆ de façon que l’inégalité précédente devienne une égalité.

1. Introduction

Let Mn be a compact Riemannian manifold. Fix a point x ∈ M . For any unit tangent vector v ∈ TxM , consider
the geodesic γv(t) = exp tv. Set s(v) = sup{t | d(x, γv(t)) = t}, where d is the distance in M . The cut locus of x is
C(x) = {γv(s(v)) | v ∈ TxM,‖v‖ = 1}, see [2], §6.5.4. Recall [2,5] that M \ C(x) is an n-dimensional cell. If n = 3
and M3 is equipped with a metric without conjugate points, then C(x) is a two-dimensional polyhedron which is a
simple (see below) spine of M3 [3].

Recall [4] that a 2-polyhedron is called simple if the link of any of its points is homeomorphic to a circle or to
a circle with a diameter or to a circle with three radii. The points whose links are circles with diameters form triple
lines of C(x), and the points whose link is a circle with three radii are called vertices of C(x). Let P be a simple
polyhedron with at least one vertex. By SP denote the union of all triple lines and vertices of P . Then P is called a
special polyhedron if it contains no closed triple lines (without vertices) and every connected component of P \ SP
is a cell. A spine P ⊂ M3 is simple, respectively, special if it is a simple (respectively, special) polyhedron. Every
3-manifold has infinitely many special spines, and can be uniquely (up to homeomorphism) reconstructed from any
of its special spines [6,7]. The complexity c(M) of a 3-manifold M is the minimal number of vertices of an almost
simple spine of M (which is called a minimal spine in this case); for the manifolds considered below, minimal spines
are always special [6].

Now suppose that M3 admits a geometric structure, e.g., is elliptic or flat. Though cut loci are defined with respect
to arbitrary Riemannian metric, the cut loci corresponding to canonical metrics on M clearly deserve special attention
(in particular, as a natural class of spines of M). In this paper, we study geometry, topology, and combinatorial
properties of cut loci in lens manifolds equipped with the canonical metric. In Section 3 we compare these cut loci
with the spines constructed in [6].
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2. Geometry

Let p and q be coprime positive integers, p > q . The cyclic group with p elements, Zp , acts freely on the unit
sphere S3 ⊂ C

2: the generator of the group takes (z,w) ∈ C
2 to (ξz, ξqw), where ξ = e2π i/p . The quotient space is the

lens manifold Lp,q endowed with the natural metric of constant curvature +1. In what follows, we always consider
this standard metric on Lp,q and this action of Zp .

Lemma 2.1. The diameter of Lp,q equals π/2.

Proof. The distance in S3 between the Zp orbits of (1,0) and (0,1) is π/2, therefore diam(Lp,q) � π/2. Now
suppose that diam(Lp,q) = d > π/2. Then there are two points x, y ∈ S3 such that the d-neighborhood of x contains
no points of the orbit Zpy of y. Then, if x is the North pole, the whole orbit Zpy lies in the Southern hemisphere, and
the baricenter of Zpy differs from the origin. �
Definition 2.2. A point x ∈ Lp,q is a special point if there exists a point y ∈ Lp,q such that the distance d(x, y)

equals π/2; otherwise x is called an ordinary point.

Lemma 2.3. If q = ±1 mod p, then all points x ∈ Lp,q are special points. If q �= ±1 mod p, then the special points
form two circles in Lp,q (thus, in this case ordinary points form a dense subset of Lp,q ).

Proof. The proof of Lemma 2.1 implies that d(x, y) = π/2 for points x, y ∈ Lp,q if and only if the unit vectors Oxi

and Oyj are orthogonal for any i, j ∈ {1, . . . , p}, where x1, . . . , xp and y1, . . . , yp are the pre-images of x and y

under the natural covering S3 → Lp,q . Consider the spans (in R
4) of {Ox1, . . . ,Oxp} and of {Oy1, . . . ,Oyp}. These

subspaces of R
4 are at least two-dimensional (as p > 2) and orthogonal, which means that they are two-dimensional.

It can easily be shown that the span of the Zp orbit of a point (z,w) ∈ C
2 has (real) dimension 2 only in the following

cases: (1) z = 0 or w = 0; (2) q = 1 or q = p − 1.
In the first case, special points form in Lp,q two circles that are projections of the two circles (0, eiϕ) and (eiϕ,0),

ϕ ∈ R/2πZ, in S3 ⊂ C
2, and they are π/2-equidistants of each other. In the second case, any Zp orbit is contained in

a Hopf circle z/w = const (or z̄/w = const) whose π/2-equidistant is another Hopf circle containing some Zp orbits,
which implies that Lp,1 and Lp,p−1 consist of special points only. �

The distance from any point of Lp,q to its first conjugate point along any geodesic equals π (consider the unit
sphere S3, which covers Lp,q ); by Lemma 2.1 this exceeds the diameter of Lp,q . Thus, for any x ∈ Lp,q , the cut locus
C(x) ⊂ Lp,q is the set of points y ∈ Lp,q such that the shortest geodesic between x and y is not unique (see [5]).

Theorem 2.4. (a) Let x ∈ Lp,q be a special point. Then C(x) consists of an open 2-disk and a circle S(x). The
boundary of the disk is glued to S(x) so that the gluing map is a p-fold covering. Thus a small neighborhood of S(x)

in C(x) is a fibration with fiber a wedge of p intervals. Its monodromy is a rotation by 2π/p if q = 1 or q = p − 1,
and a rotation by 2πq/p or 2πr/p with r = q−1 mod p, depending on whether z = 0 or w = 0 for the pre-images of
x in S3, if 1 < q < p − 1. The circle S(x) is the set of points lying at the distance π/2 from x.

(b) Let x ∈ Lp,q be an ordinary point. Then C(x) is a simple polyhedron with E(p,q) − 3 vertices, where
E(p,q) = n1 +· · ·+nk is the sum of the entries of the continued fraction p/q = n1 +1/(n2 +1/(n3 +· · ·+1/nk) . . .).
Moreover, C(x) has the same combinatorial type as the spine of Lp,q constructed in [6].

Let C̃(x) be the pre-image of C(x) under the standard p-fold covering S3 → Lp,q . Then C̃(x) is the set of points
y ∈ S3 such that the element of the pre-image Zpx̃ of x ∈ Lp,q nearest (in S3) to y is not unique. Consider also the
Voronoi diagram V (x) ⊂ R

4 of the p elements of the orbit Zpx̃. By definition (see [9]), V (x) is the set of points
y ∈ R

4 such that the point of Zpx̃ nearest to y is not unique.

Lemma 2.5. We have C̃(x) = V (x) ∩ S3.

Proof. Let u,v,w ∈ S3. By d(u, v) (respectively, |uv|) denote the distance between u and v in S3 (respectively, in
ambient R

4). Then d(u,w) < d(v,w) if and only if |uw| < |vw|, and the claim follows. �
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It follows from the proof of Lemma 2.3 that the orbit Zpx̃ is the set of vertices of a flat regular p-gon. Then
V (x) = R

2 × Yp , where the R
2 passes through the origin O orthogonally to the plane containing Zpx̃, and Yp is the

wedge of p rays Oyi , i = 1, . . . , p, which emanate from the center of the regular p-gon Zpx̃ and pass through the
midpoints of its sides. In other words, V (x) consists of p copies of R

2 ×R�0 glued together along the plane R
2 ×{0}.

Therefore, V (x) ∩ S3 consists of p disks glued together along the circle (R2 × {0}) ∩ S3. By Lemma 2.5, C(x) is the
projection of V (x) ∩ S3 under the natural covering S3 → Lp,q , and the statements made in part (a) of Theorem 2.4
follow.

The proof of part (b) of Theorem 2.4 begins with the following statement.

Lemma 2.6. The cell decomposition of S3 defined by C̃(x) is dual to the convex hull of Zpx̃.

Proof. By the proof of Lemma 2.3, the origin O is an interior point of Conv Zpx̃ whenever x̃ ∈ S3 represents an
ordinary point of Lp,q ; thus, support hyperplanes of ConvZpx̃ do not pass through O .

For any A ∈ S3, a support hyperplane α(A) of Conv Zpx̃ is given by the following construction: move the plane
tangent to S3 at A parallelly to itself towards the origin until it meets some vertices A1, . . . ,Ai of Conv Zpx̃. Similarly,
a point A(α) ∈ S3 is assigned to a support hyperplane α; here we use that O /∈ α.

All points of S3 ∩ α (including A1, . . . ,Ai ) are equally distant from A(α), while all other points of Zpx̃ are more
distant from A than A1, . . . ,Ai . This means that a point A ∈ S3 belongs to the closure of the cell of V (x) defined by
A1, . . . ,Ai (or of the Voronoi domain of A1 if i = 1) if and only if the support hyperplane α(A) contains the face
A1 · · ·Ai of Conv Zpx̃, and the duality follows. �

By Lemma 2.6, the combinatorial type of the polytope Conv Zpx̃ governs the structure of C̃(x) ⊂ S3 and of
C(x) ⊂ Lp,q . Note that Conv Zpu is taken to Conv Zpv by the diagonal linear transformation of C

2 that takes u to v;
such a transformation always exists provided that u and v correspond to ordinary points of Lp,q . Consequently, the
combinatorial type of Conv Zpx̃ is independent of the choice of ordinary point x.

The proof of part (b) of Theorem 2.4 is reduced to the study of the combinatorial type of Conv Zpx̃; it is quite
involved and will be presented in detail elsewhere.

3. Topology

In this section we compare cut loci in lens manifolds with the spines of Lp,q constructed in [6], and cut loci in
manifolds of complexity c(M) � 6 with their minimal spines (listed in [7]).

The complexity c(Lp,q) of an arbitrary lens manifold Lp,q is not known. However, special spines of Lp,q with
exactly E(p,q)−3 vertices do exist, and it is conjectured that c(Lp,q) = E(p,q)−3, see [6]. No spines of Lp,q with
less than E(p,q) − 3 vertices are known.

Consider a lens manifold Lp,q , q �= ±1 mod p. Most of its points are ordinary and, by Theorem 2.4(b), their cut
loci are the special spines constructed in [6] topologically; now we get a geometrical construction.

If q = 1, then any point x ∈ Lp,q is special, so the cut loci are not simple spines whenever p > 3. Nevertheless,
there exist small perturbations of the cut loci that are special spines of Lp,q with exactly p − 3 vertices (note that
E(p,1) = p).

Theorem 3.1. Cut loci in geometrical 3-manifolds M3 with respect to their natural metrics or small perturbations
of those cut loci are simple spines of M3 (a perturbation of C(x), by shifting x or perturbing the metric, is only
necessary if C(x) is not a simple spine) that minimize the number of vertices among all currently known spines of M3

in (at least) the following two cases:

(a) c(M3) � 6, where c(·) denotes the complexity;
(b) M3 is an arbitrary lens manifold Lp,q .

Sketch of the proof. According to [7], there are 129 elliptic and 6 flat manifolds of complexity at most 6. Let us
start with one of the flat manifolds, the torus T 3 = R

3/Z
3, which has complexity 6. In the most natural flat metric

ds2 = dϕ2 + dψ2 + dθ2, the cut locus of (1/2,1/2,1/2) ∈ T 3 is the union of three ‘coordinate’ 2-tori given by the
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equations ϕ = 0, ψ = 0, and θ = 0. This is not a simple spine of T 3 because the intersections of the tori are not
triple lines and the link of the most singular point (0,0,0) is the 1-skeleton of the octahedron, not of the tetrahedron.
However, in a slightly perturbed flat metric ds2 = dϕ2 + dψ2 + dθ2 + ε dϕ dψ + ε dϕ dθ + ε dψ dθ , the cut locus of
any point x becomes a simple spine of T 3 with 6 vertices, which is a small perturbation of C(x) with respect to the
standard flat metric on T 3. The other five flat manifolds can be examined similarly.

The other 129 manifolds of small complexity are covered by S3 (note that 51 of them are not lenses, see [7], Ch. 9).
Lemma 2.5 relates a cut locus in such a manifold to the Voronoi diagram of a π1(M

3)-orbit in R
4, and Lemma 2.6

enables us to extract the information that we need from the combinatorial type of the convex hull of that orbit. The
computations are facilitated by the package [8].

If M3 = Lp,q is a lens manifold, there are two cases: q = ±1 mod p and q �= ±1 mod p. In the first case, a simple
spine of Lp,q with p − 3 vertices can be obtained as a small perturbation of the cut locus described in part (a) of
Theorem 2.4. In the second case the result follows from part (b) of Theorem 2.4. �
4. Combinatorics

Theorem 3.1 suggests the following construction. Consider the cut locus C(x) ⊂ Lp,q of a special point x ∈ Lp,q .
The structure of C(x) is described in Theorem 2.4(a): its ‘non-generic’ part is S1 with p ‘leaves’ attached to it. A small
generic perturbation (if q �= ±1 mod p, it suffices to move x to an ordinary point) would break this S1 into a gasket
of triple lines crossing each other at a number of vertices.

Consider the sections of the perturbed cut locus by small disks transversal to the multiple circle S1 of the unper-
turbed C(x). Most of these sections (except those passing through the vertices) are trivalent graphs with p −2 internal
vertices and p ‘external’ legs; the legs correspond to the p leaves of C(x) that gather around S1, and the trivalent ver-
tices are cross-sections of the triple lines. Duality provides a natural bijection between the isotopy classes of these
graphs (with indexed legs) and the triangulations of the regular p-gon (with indexed sides).

By genericity, we can assume that each nongeneric section contains at most one vertex of the perturbed cut locus.
Therefore, as a transversal disk moves along the gasket, the corresponding triangulation of the p-gon undergoes a
sequence of flips—simplest transformations of a triangulation, where two triangles ABC and ACD with a common
side AC get replaced by the other pair of triangles, ABD and BCD, whose union is the same quadrilateral ABCD.

It follows from part (a) of Theorem 2.4 that the monodromy along the gasket takes the triangulation ∆1 of the
p-gon to its triangulation ∆2 by rotating it by angle 2πq/p: ∆2 = R2πq/p∆1. Recall [10] that the minimal number
of flips required to convert ∆1 to ∆2 is called the rotation distance ρ(∆1,∆2). By the construction described above,
ρ(∆,R2πq/p∆) is bounded from below by the minimal possible number of vertices in a simple spine of Lp,q that is
a small perturbation of the cut locus C(x) of a special point x. Moreover, this lower bound is sharp.

Theorem 4.1.

(a) Let ∆ be a triangulation of a regular p-gon. Then ρ(∆,R2πq/p∆) � E(p,q) − 3;
(b) one can choose a triangulation ∆ so that the inequality above becomes an equality.

Sketch of the proof. For the proof of statement (a), see [1].
To prove statement (b), first assume p and q to be coprime. There exist simple spines of Lp,q with E(p,q) − 3

vertices, see [7]. By part (b) of Theorem 3.1, such spines can be found among small perturbations of cut loci C(x),
where x is an arbitrary point of Lp,q , in particular, a special point. Therefore, ρ(∆,R2πq/p∆) � E(p,q) − 3, where
∆ is the p-gon triangulation dual to a ‘cross-section of the gasket’ as described above. Combined with the inequality
of part (a), this gives the equality.

Now suppose that p = p1d and q = q1d , where d > 1, and p1 and q1 are coprime. Note that E(p,q) = E(p1, q1).
Furthermore, there exists a triangulation ∆′ of the regular p1-gon such that ρ(∆′,R2πq/p∆′) = E(p1, q1) = E(p,q).
Now inscribe the regular p1-gon in the regular p-gon by selecting every d-th vertex. The rest of the p-gon consists
of p1 congruent (d + 1)-gons. Fix an arbitrary triangulation for one of them, repeat it in all other (d + 1)-gons
(by rotations by 2πq/p around the center of the p-gon), and triangulate the p1-gon by ∆′. This gives the required
triangulation ∆ in the case gcd(p, q) > 1. �
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