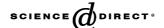


Available online at www.sciencedirect.com



C. R. Acad. Sci. Paris, Ser. I 342 (2006) 345-348

http://france.elsevier.com/direct/CRASS1/

Statistique

Processus empirique de fonctionnelles de champs gaussiens à longue mémoire

Frédéric Lavancier a,b

^a LS-CREST, ENSAE, 3, avenue Pierre Larousse, 92245 Malakoff, France ^b Laboratoire Paul-Painlevé, UMR CNRS 8424, 59655 Villeneuve d'Ascq, France

Reçu le 13 novembre 2005; accepté après révision le 20 décembre 2005

Présenté par Paul Deheuvels

Résumé

Nous étudions le comportement asymptotique du processus empirique d'une fonctionnelle d'un champ gaussien sur \mathbb{Z}^d , stationnaire et à longue mémoire. La forte dépendance du champ considéré pourra être soit isotrope, comme dans les travaux pré-existants, soit non-isotrope. Dans tous les cas nous trouvons que la limite du processus empirique doublement indexé est dégénérée dans la mesure où elle est, comme lorsque d=1, de la forme f(x)Z(t) où f est une fonction déterministe et f0 un champ aléatoire sur f0. Pour citer cet article: F. Lavancier, C. R. Acad. Sci. Paris, Ser. I 342 (2006).

© 2006 Académie des sciences. Publié par Elsevier SAS. Tous droits réservés.

Abstract

Empirical process of long memory Gaussian subordinated random fields. We study the asymptotic behaviour of the doubly indexed empirical process of stationary Gaussian subordinated random fields with long-range dependence. Contrary to the situation chosen in the pre-existing papers, the long memory is not necessarily isotropic. In all the investigated cases, the limiting process is degenerated insofar as it has the form f(x)Z(t) where f is the marginal density and Z a random field. To cite this article: F. Lavancier, C. R. Acad. Sci. Paris, Ser. I 342 (2006).

© 2006 Académie des sciences. Publié par Elsevier SAS. Tous droits réservés.

1. Introduction

Nous considérons le processus empirique doublement indexé par $x \in \mathbb{R}$ et $t \in [0, 1]^d$. Il est défini, à une normalisation près dépendante de n, par

$$\sum_{k_1=1}^{[nt_1]} \cdots \sum_{k_d=1}^{[nt_d]} \left[\mathbb{1}_{\{G(X_{k_1,\dots,k_d}) \leqslant x\}} - F(x) \right], \tag{1}$$

où G est une fonction mesurable et où F est la fonction de répartition du champ aléatoire $(G(X_n))_{n\in\mathbb{Z}^d}$.

Adresse e-mail: lavancier@math.univ-lille1.fr (F. Lavancier).

En dimension d=1, le processus empirique de variables aléatoires dépendantes a fait l'objet de nombreuses études parmi lesquelles [1–3,6–8]. Il est étudié dans [3] sous l'hypothèse où X est gaussien et où sa fonction de covariance vérifie $r(h) = h^{\alpha}L(h)$ où $-1 < \alpha < 0$ et où L est une fonction à variation lente à l'infini. Dans ce contexte, les auteurs montrent la dégénérescence asymptotique du processus limite, celui-ci ayant la forme f(x)Z(t), où f est une fonction déterministe et Z un processus stochastique.

Ce comportement, en dimension d=1, semble être une caractéristique exclusive des processus à longue mémoire et l'on peut se demander si cette dégénérescence persiste dans le cadre plus large des champs.

En dimension d quelconque, la convergence de (1) est étudiée en t=1 dans [5] lorsque G est la fonction identité et lorsque le champ stationnaire X est linéaire et à longue mémoire isotrope. Ce travail montre la même dégénérescence asymptotique du processus empirique que celle qui se produit en dimension d=1.

Dans le Corollaire 3.1, nous reprenons l'étude de [5] et montrons, pour un champ gaussien à longue mémoire isotrope, et pour une fonction G quelconque, la convergence du champ (1) proprement normalisé dans l'espace $\mathcal{D}(\overline{\mathbb{R}} \times [0,1]^d)$. Ce travail étend donc aux dimensions $d \ge 2$ celui de [3]. Nous supposons ensuite, dans les Corollaires 3.2 et 3.3, que le champ X est linéaire, gaussien et qu'il est à forte dépendance non-isotrope. Nous établissons alors la convergence dans $\mathcal{D}(\overline{\mathbb{R}} \times [0,1]^d)$ du processus empirique proprement normalisé lorsque le rang de Hermite de $\mathbb{1}_{\{G(X_1) \le x\}} - F(x)$ vaut 1.

L'ensemble de ces résultats repose sur le principe de réduction uniforme introduit dans [3], que nous généralisons dans le Théorème 2.1. Il lie le comportement asymptotique du processus empirique d'un champ aléatoire à longue mémoire à celui de ses sommes partielles. Nous nous appuierons donc sur le comportement asymptotique des sommes partielles obtenu en longue mémoire isotrope dans [4] et en longue mémoire non-isotrope dans [9].

2. Principe de réduction uniforme

Soit $(X_j)_{j\in\mathbb{Z}^d}$ un champ gaussien stationnaire de fonction de covariance r tel que r(0)=1. Soit G une fonction mesurable. On considère le développement suivant sur la base des polynômes de Hermite :

$$\mathbb{1}_{\{G(X_j) \leqslant x\}} - F(x) = \sum_{q=m}^{\infty} \frac{J_q(x)}{q!} H_q(X_j), \tag{2}$$

où $F(x) = P(G(X_1) \le x)$ est la fonction de répartition de $G(X_1)$. Les H_q sont les polynômes de Hermite de degré q et

$$J_q(x) = E[\mathbb{1}_{\{G(X_1) \leqslant x\}} H_q(X_1)]. \tag{3}$$

m est appelé le rang de Hermite de la fonction $\mathbb{1}_{\{G(X_1) \leq x\}} - F(x)$. En posant $A_n = \{1, \dots, n\}^d$, soit

$$R_n(x) = \sum_{j \in A_n} \left[\mathbb{1}_{\{G(X_j) \leqslant x\}} - F(x) - \frac{J_m(x)}{m!} H_m(X_j) \right]. \tag{4}$$

Théorème 2.1. Avec les notations précédentes, soit

$$d_N^2 = \text{Var}\bigg(\sum_{j \in A_N} H_m(X_j)\bigg) = m! \sum_{j,k \in A_N^2} r^m(k-j).$$
 (5)

Si $d_N \to \infty$, on a, pour tout $\delta > 0$ et tout $n \leq N$,

$$P\left(\sup_{x} d_{N}^{-1} \left| R_{n}(x) \right| > \epsilon \right) \leqslant C(\epsilon) N^{\delta} d_{N}^{-2} \sum_{j,k \in A_{N}^{2}} \left| r(k-j) \right|^{m+1} + \frac{d_{n}^{2}}{N^{2d}},\tag{6}$$

où $C(\epsilon)$ est une constante positive qui dépend de ϵ .

Démonstration. La preuve s'appuie sur un argument de chaînage selon le même schéma que dans la démonstration du principe de réduction uniforme se trouvant dans [3]. Les détails se trouvent dans [10]. □

Si l'on connaît la distribution limite de $d_N^{-1} \sum_{j \in A_N} H_m(X_j)$, l'inégalité (6) nous fournit le comportement asymptotique du processus empirique (1) dès que le majorant dans (6) tend vers 0 lorsque N tend vers l'infini.

3. Application à diverses situations de forte dépendance

Nous présentons des corollaires dans lesquels les conditions du Théorème 2.1 sont remplies, nous fournissant la loi limite de (1). Le premier concerne des champs à longue mémoire isotrope étudiés dans [4]. Les autres concernent des situations de longue mémoire non isotrope : nous considérons d'une part des champs à longue mémoire de type produit et d'autre part des champs dont la densité spectrale est singulière sur des sous espaces linéaires de $[-\pi, \pi]^d$.

Corollaire 3.1 (longue mémoire isotrope). En conservant les notations précédentes, supposons que (X_n) admet comme fonction de covariance

$$r(k) = |k|^{-\alpha} L(|k|) b\left(\frac{k}{|k|}\right),$$

avec r(0) = 1, où $0 < m\alpha < d$, où $|k| = \sum_{i=1}^{d} |k_i|$ et où L est une fonction à variation lente à l'infini et b une fonction continue sur la sphère unité de \mathbb{R}^d .

Alors

$$\frac{1}{n^{d-m\alpha/2}(L(n))^{m/2}} \sum_{j_1=1}^{[nt_1]} \cdots \sum_{j_d=1}^{[nt_d]} \left[\mathbb{1}_{\{G(X_j) \leqslant x\}} - F(x) \right] \stackrel{\mathcal{D}(\overline{\mathbb{R}} \times [0,1]^d)}{\Longrightarrow} \frac{J_m(x)}{m!} Z_m(t),$$

où la convergence a lieu dans $\mathcal{D}(\overline{\mathbb{R}} \times [0,1]^d)$ muni de la topologie uniforme et de la tribu engendrée par les boules ouvertes et où Z_m représente le processus de Hermite de degré m.

Démonstration. Sous les conditions du Corollaire 3.1, le majorant dans (6) tend vers 0 lorsque N tend vers l'infini. Le comportement asymptotique de (1) est donc dicté par celui des sommes partielles de $H_m(X_j)$. D'après [4], ces sommes partielles convergent vers Z_m . \square

Pour les résultats concernant la longue mémoire non-isotrope, nous supposons que le rang de Hermite de la fonction $\mathbb{1}_{\{G(X_n) \leqslant x\}} - F(x)$ vaut 1 (c'est par exemple le cas lorsque G est la fonction identité). Notre démarche s'appuie en effet sur l'inégalité (6) qui nécessite la limite des sommes partielles de $H_m(X_j)$; lorsque X est à longue mémoire non isotrope, le comportement de ces sommes partielles est obtenu dans [9] dans le cas où m=1.

Corollaire 3.2 (longue mémoire non-isotrope de type produit). *Soit* $(\epsilon_n)_{n\in\mathbb{Z}^d}$ *un bruit blanc gaussien. On considère le champ linéaire*

$$X_n = \sum_{k \in \mathbb{Z}^d} a_k \epsilon_{n-k},$$

où les (a_k) sont, à une constante normalisatrice près garantissant $Var(X_1) = 1$, les coefficients de Fourier du filtre

$$a(\lambda) = \prod_{j=1}^{d} s(\lambda_j) |\lambda_j|^{\alpha_j},$$

où, pour tout j, $-1/2 < \alpha_j < 0$ et où s_j est bornée, continue en 0 tel que $s_j(0) \neq 0$. On suppose que le rang de Hermite de la fonction $\mathbb{1}_{\{G(X_n) \leq x\}} - F(x)$ vaut 1. Alors,

$$\frac{1}{n^{d/2-\sum_{j=1}^{d}\alpha_{j}}}\sum_{j_{1}=1}^{[nt_{1}]}\cdots\sum_{j_{d}=1}^{[nt_{d}]}\left(\mathbb{1}_{\{G(X_{j})\leqslant x\}}-F(x)\right)\stackrel{\mathcal{D}(\overline{\mathbb{R}}\times[0,1]^{d})}{\Longrightarrow}J_{1}(x)\int\limits_{\mathbb{R}^{d}}\prod_{j=1}^{d}s_{j}(0)|\lambda_{j}|^{\alpha_{j}}\frac{\mathrm{e}^{\mathrm{i}t_{j}\lambda_{j}}-1}{\mathrm{i}\lambda_{j}}\,\mathrm{d}W(\lambda),$$

où J_1 est défini par (3), où W est le champ spectral associé au bruit blanc gaussien et où la convergence a lieu dans $D(\overline{\mathbb{R}} \times [0,1]^d)$ muni de la topologie uniforme et de la tribu engendrée par les boules ouvertes.

Démonstration. Comme dans le Corollaire 3.1, la convergence donnée dans le Corollaire 3.2 est issue du comportement asymptotique des sommes partielles de (X_j) . On le trouve dans [9]. \Box

Nous donnons enfin un résultat de convergence dans le cas de champs gaussiens dont la densité spectrale est singulière sur un sous espace linéaire de $[-\pi,\pi]^d$.

Corollaire 3.3. Soit $(\epsilon_n)_{n\in\mathbb{Z}^d}$ un bruit blanc gaussien. On considère le champ linéaire

$$X_n = \sum_{k \in \mathbb{Z}^d} a_k \epsilon_{n-k},$$

où les (a_k) sont, à une constante normalisatrice près garantissant $Var(X_1) = 1$, les coefficients de Fourier du filtre

$$a(\lambda) = \left| \sum_{i=1}^{d} c_i \lambda_i \right|^{\alpha}, \quad -\frac{1}{2} < \alpha < 0,$$

 $o\dot{u} \lambda = (\lambda_1, \dots, \lambda_d) \ et \ (c_1, \dots, c_d) \in \mathbb{R}^d.$

On suppose que le rang de Hermite de la fonction $\mathbb{1}_{\{G(X_n) \leq x\}} - F(x)$ vaut 1.

Alors, quelque soit $-1 < 2\alpha < 0$ lorsque $d \le 3$ et sous la restriction $-\frac{1}{d-2} < 2\alpha < 0$ lorsque $d \ge 4$,

$$\frac{1}{n^{d/2-\alpha}} \sum_{j_1=1}^{[nt_1]} \cdots \sum_{j_d=1}^{[nt_d]} \left(\mathbb{1}_{\{G(X_j) \leqslant x\}} - F(x) \right) \stackrel{\mathcal{D}(\overline{\mathbb{R}} \times [0,1]^d)}{\Longrightarrow} J_1(x) \int_{\mathbb{R}^d} a(\lambda) \prod_{j=1}^d \frac{e^{it_j \lambda_j} - 1}{i\lambda_j} dW(\lambda),$$

où J_1 est défini par (3), où W est le champ spectral associé au bruit blanc gaussien et où la convergence a lieu dans $D(\overline{\mathbb{R}} \times [0,1]^d)$ muni de la topologie uniforme et de la tribu engendrée par les boules ouvertes.

Démonstration. Sous les hypothèses du Corollaire 3.3, le majorant dans (6) est asymptotiquement nul. Le résultat de convergence de ce corollaire se déduit donc de la convergence des sommes partielles de (X_i) montrée dans [9]. \Box

Références

- [1] J. Beran, Statistics for Long Memory Processes, Chapman and Hall, New York, 1994.
- [2] H. Dehling, T. Mikosch, M. Sorensen, Empirical Process Techniques for Dependent Data, Birkhäuser, Boston, 2002.
- [3] H. Dehling, M.S. Taqqu, The empirical process of some long-range dependent sequences with an application to U-statistics, Ann. Statist. 4 (1989) 1767–1783.
- [4] R.L. Dobrushin, P. Major, Non central limit theorems for non-linear functionals of Gaussian fields, Z. Warsch. Verw. Gebiete 50 (1979) 27–52.
- [5] P. Doukhan, G. Lang, D. Surgailis, Asymptotics of weighted empirical processes of linear fields with long-range dependence, Ann. Inst. H. Poincaré 6 (2002) 879–896.
- [6] P. Doukhan, G. Lang, D. Surgailis, M.-C. Viano, Functional limit theorem for the empirical process of a class of Bernoulli shifts with long memory, J. Theoret. Probab. 18 (2005) 161–186.
- [7] P. Doukan, G. Oppenheim, M.S. Taqqu, Long-Range Dependence: Theory and Applications, Birkhäuser, Boston, 2003.
- [8] H.-C. Ho, T. Hsing, On the asymptotic expansion of the empirical process of long memory moving averages, Ann. Statist. 24 (1996) 992–1024.
- [9] F. Lavancier, Invariance principles for non-isotropic long memory random fields, Preprint, 2005. Disponible à http://math.univ-lille1.fr/~lavancier.
- [10] F. Lavancier, Processus empirique de fonctionnelles de champs gaussiens à longue memoire, Preprint 63, IX, IRMA, Lille, 2005. Disponible à http://math.univ-lille1.fr/~lavancier.