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Abstract

We answer a question of M. Flach by showing that there is a linear representation of a profinite group whose universal
tion ring is not a complete intersection. We show that such examples arise in arithmetic in the following way. There are i
many real quadratic fieldsF for which there is a mod 2 representation of the Galois group of the maximal unramified exten
F whose universal deformation ring is not a complete intersection.To cite this article: F.M. Bleher, T. Chinburg, C. R. Acad. Sci.
Paris, Ser. I 342 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Les anneaux de déformation universelle ne sont pas nécessairement d’intersection complète.Nous répondons à une que
tion de M. Flach en démontrant qu’il existe une représentation linéaire d’un groupe profini dont l’anneau de déformation un
n’est pas un anneau d’intersection complète. Nous montrons que l’arithmétique fournit de tels exemples dans les situa
vantes. Il existe une infinité de corps quadratiques réelsF tels qu’il existe une représentation du groupe de Galois de l’exten
maximale non-ramifiée deF sur un corps de caractéristique 2 dont l’anneau de déformation universelle n’est pas un anne
tersection complète.Pour citer cet article : F.M. Bleher, T. Chinburg, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

In this Note we answer a question of Flach [3] by giving an example of a linear representation of a p
group over a field of positive characteristic which has an (unrestricted) universal deformation ring which i
complete intersection. To our knowledge, this is the first example of such a representation. In Section 3 we
some arithmetic examples.

2. The non-trivial irreducible mod 2 representation of S4

Theorem 2.1.Let k be a perfect field of characteristic 2, let W be the ring of infinite Witt vectors over k, and let S4
be the symmetric group on 4 letters. Let V be a non-trivial irreducible kS4-module of dimension 2; V is unique up to
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E-mail addresses: fbleher@math.uiowa.edu (F.M. Bleher), ted@math.upenn.edu (T. Chinburg).
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isomorphism. The universal deformation ring R(S4,V ) of V is isomorphic to W [[t]]/(t2,2t). In particular, R(S4,V )

is not a complete intersection ring.

For background on deformation theory, see [4] and [6]. As in [5, §19.3], a commutative local Noetheria
R is a complete intersection ring if there is a regular complete local commutative Noetherian ringS and a regula
sequencex1, . . . , xn ∈ S such that the completion̂R of R with respect to powers of the maximal ideal is isomorp
to S/(x1, . . . , xn).

The fact thatW [[t]]/(t2,2t) is not a complete intersection ring is a consequence of [5, Proposition (19.3.2)]
the ideal(t2,2t) cannot be generated by a regular sequence of elements in the regular local ringW [[t]]. To show
R(S4,V ) ∼= W [[t]]/(t2,2t), which is a correction of [1, Proposition 4.2], we need the following lemma, which
correction of [1, Lemma 4.1]. The proof is elementary, so we will omit it.

Lemma 2.2.Let W be the ring of infinite Witt vectors over k. Let R be a complete local Noetherian W -algebra for
which there is exactly one continuous surjection τ :R → W of W -algebras and an isomorphism µ :R/2R → k[s]/(s2)

of W -algebras. Then R is isomorphic to W [[t]]/(t2 − 2γ t,α2mt), where γ ∈ W , α ∈ {0,1}, 0 < m ∈ Z and either
γ = 0 or α = 1.

To prove Theorem 2.1, we notice that by [1, Proof of Proposition 4.2], there is exactly one continuous
tive W -algebra homomorphismR = R(S4,V ) → W , andR/2R ∼= k[t]/(t2). By Lemma 2.2,R is isomorphic to
W [[t]]/(t2 − 2γ t,α2mt) for someγ andα as in the lemma. LetG = 〈u,v, r, s | Rel〉 with Rel= {u2 = v2 = r3 =
s2 = 1, uv = vu, srs = r−1, sus = v, svs = u, rur−1 = v, rvr−1 = uv}. By lettingu = (1,2)(3,4), v = (1,4)(2,3),
r = (1,2,3) and s = (1,3), we see thatG is isomorphic toS4. We now construct a representationτ :G = S4 →
GL2(W [[t]]/(t2,2t)) which mod 2 gives a universal mod 2 deformation ofV . Defineτ by the following matrices:

τ(u) =
(

1+ t t

0 1+ t

)
, τ (v) =

(
1+ t 0

t 1+ t

)
, τ (r) =

(
0 −1
1 −1

)
, τ (s) =

(
0 1
1 0

)
.

The reduction̄τ of τ mod 2 defines an indecomposablekS4-module�U satisfyingt �U ∼= V and�U/t �U ∼= V . It follows
from R(S4,V )/2R(S4,V ) ∼= k[t]/(t2) that �U is isomorphic to the universal mod 2 deformation ofV askS4-module.
The reduction ofτ mod(t) defines a deformation ofV overW and corresponds to the unique surjectionR(S4,V ) →
W = R(S3,V ) mentioned earlier.

Suppose now thatR is not isomorphic toW [[t]]/(t2,2t) so that ifα = 1 thenm � 2. Recallγ = 0 or α = 1. To
obtain a contradiction, we need to show there are noγ andα as above such thatτ can be lifted toW [[z]]/(z2 −
2γ z,α2mz) for a continuousW -algebra homomorphism

ν :R = W [[z]]/(z2 − 2γ z,α2mz
) → W [[t]]/(t2,2t

)
which induces an isomorphismR/2R → k[t]/(t2). One checks thatν(z) = κt for someκ ∈ W ∗, so on replacingγ by
κ−1γ we can reduce to the case in whichν(z) = t . SinceW [[t]]/(t2 − 2γ t,4t) is a quotient algebra ofW [[z]]/(z2 −
2γ z,α2mz) through whichν factors, it is enough to show thatτ cannot be lifted toW [[t]]/(t2 − 2γ t,4t) for any
γ ∈ W for the canonical projectionπγ :W [[t]]/(t2 − 2γ t,4t) → W [[t]]/(t2,2t) sendingt to t .

This can be seen by looking atτ(u). If τ̂ were a lift of τ to W [[t]]/(t2 − 2γ t,4t) for πγ , then τ̂ (u) would be
conjugate to a matrixAu over W [[t]]/(t2 − 2γ t,4t) which has to satisfy the relationA2

u ≡ I mod (t2 − 2γ t,4t),
whereI denotes the identity 2× 2 matrix. An easy matrix calculation shows that this is not possible. Henceτ cannot
be lifted toW [[t]]/(t2 − 2γ t,4t) for anyγ ∈ W , which implies thatR = R(S4,V ) ∼= W [[t]]/(t2,2t).

3. Capping groups

Definition 3.1.Let � be a prime number, and suppose there is a short exact sequence

1 → K → Γ
π−→ G → 1

whereΓ andG are profinite groups,π is a continuous group homomorphism andK is a closed normal subgrou
of Γ . We sayG caps Γ (via π) for � if there is no closed normal subgroupK0 of Γ satisfyingK0 ⊂ K and for which
K/K0 is a non-trivial pro-� group. By considering intersections of conjugate subgroups, this is equivalent to
that there is no closed normal subgroupK ′ of K such thatK/K ′ is a non-trivial pro-� group.
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We now relate this concept to deformation theory. For simplicity, we suppose thatΓ satisfies the following
�-finiteness condition of Mazur [6]. Ifk is a perfect field of characteristic�, thenH 1(Γ,X) is finite dimensiona
over k for all discrete finite dimensional representationsX over k. By [6], this implies that ifV is a discrete finite
dimensional representation ofΓ overk, the versal deformation ringR(Γ,V ) is well defined. If EndkΓ (V ) = k then
R(Γ,V ) is a universal deformation ring.

Suppose now thatV is the inflation toΓ of a representation ofG which we will also denote byV . LetU(Γ,V ) be a
versal deformation ofV as a representation ofΓ . The following result is a consequence of Lemma 2.1, Proposition
and Theorem 3.2 of [2].

Lemma 3.2.Fix a perfect field k of characteristic �. Let M(Γ,G,k) be the set of discrete finite dimensional represen-
tations V of Γ over k which are inflated from representations of G. If Γ satisfies Mazur’s �-finiteness condition, the
following are equivalent:

(a) The group G caps Γ via π for �.
(b) The group K = Ker(π :Γ → G) acts trivially on U(Γ,V ) for all V ∈ M(Γ,G,k).

In particular, if G caps Γ via π for � and V ∈ M(Γ,G,k), then R(Γ,V ) is isomorphic to the versal deformation ring
R(G,V ) of V as a representation of G.

Definition 3.3. Let � be a prime, letG be a profinite group, and letL be a number field. LetS be a finite set of
places ofL. DefineGL,S to be the Galois group overL of the maximal algebraic extension ofL which is unramified
outsideS.

(a) We sayG caps L for � at S if G capsGL,S for � via some surjectionGL,S → G.
(b) We sayG caps L for � if there is a set of placesS such thatG capsGL,S for �.
(c) We sayG is a capping group for � if G caps some number fieldL for �.

The natural question in this context is:

Question 1.Given a prime�, which profinite groupsG are capping groups for�? Which of these capQ for �?

One can phrase various statements in Iwasawa theory in terms of capping groups. For example, it follo
[9, Proposition 10.13] that an odd prime� is regular, in the sense that� does not divide the class number of t
cyclotomic fieldQ(ζ�), if and only if the groupG = Z∗

�/{±1} capsQ for � atS = {�}.
Our main result is:

Theorem 3.4.Let G be the symmetric group S4.

(a) The group G does not cap Q for � = 2.
(b) There are infinitely many real quadratic fields L such that G caps L for � = 2 at the empty set S of places of L.

Part (b) in this theorem is equivalent to the statement that there are infinitely many real quadratic fieldL for
which there is an unramifiedS4-extension ofL which has odd class number. An example of such a field isL =
Q(

√
5 · 14197).

Corollary 3.5. Let k be a perfect field of characteristic 2, let V be a non-trivial irreducible kS4-module of dimension 2.
There are infinitely many real quadratic fields L such that

(a) there is a surjection π :GL,∅ → S4, and
(b) when V is viewed as a module for GL,∅ via π , the ring R(GL,∅,V ) = R(S4,V ) ∼= W [[t]]/(t2,2t) is not a

complete intersection.
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The proofs of these results use a Theorem of Tate [8, Theorem 4] which states that every projective repre
ρ̃ :GF → PGL2(C) of the absolute Galois groupGF of a local or global fieldF has a lifting to a linear representatio
ρ :GF → GL2(C). Different liftings differ by tensoring by a one-dimensional characterχ :GF → C∗. Part (a) of
Theorem 3.4 results from composing a surjectionGQ,S → G = S4 for some set of placesS of Q with an injection of
S4 into PGL2(C), leading to a projective representationρ̃ as above which is unramified outsideS. Tate proves tha
one can always construct a liftingρ of ρ̃ which is unramified outsideS ∪ {∞}. For a suitable characterχ :GQ → C∗,
the kernel ofχ ⊗ ρ defines a subgroupK of GQ,S of the kind needed to show thatG = S4 does not capGQ,S for
� = 2.

To prove part (b) of Theorem 3.4, one starts by lettingF = Q andS = {p} for a primep ≡ 5 mod 8 in the proo
of part (a). After replacingρ by χ ⊗ ρ, this leads to representationsρ̃ andρ of GQ,{p}. Let N be theS4-extension
�Qkernel(ρ̃) of Q. One can find suchp andρ̃ for whichp is quadratically ramified inN . Let r �= p be an auxiliary odd
prime. ThenN(

√
pr ) is an unramifiedS4-extension ofQ(

√
pr ), and Gal(N(

√
pr )/Q(

√
pr )) = S4 capsGQ(

√
pr ),∅

provided that the class numberhN(
√

pr ) of N(
√

pr ) is odd.
To showhN(

√
pr ) is odd for a suitablep and r , one can reduce to showing that there is no Galois exten

E of Q containingN(
√

pr ) which is unramified overN(
√

pr ) and for whichT = Gal(E/N(
√

pr )) is a sim-
ple module for the group ring(Z/2)Gal(N(

√
pr )/Q). If such anE exists, Gal(E/Q(

√
pr )) is an extension o

Gal(N(
√

pr )/Q(
√

pr )) = S4 by T , and one can analyze the possible groups which can occur. One then pu
ditions onr which preclude the existence of such anE. A first step in doing this is to analyze the possible liftin
to GL2(C) of a projective representationGQ(

√
pr ) → PGL2(C) which has kernel Gal(�Q/N(

√
pr )). Here one use

the fact that the restriction ofρ to GQ(
√

pr ) is one such lifting, and all liftings differ by twists by a one-dimensio
character ofGQ(

√
pr ). Having found onep andr for which hN(

√
pr ) is odd (e.g.,(p, r) = (14197,5) according to

Pari [7]) one can show that there is a positive Dirichlet density of primesq such thathN(
√

pq) is odd. One can tak
such a set ofq to consist of those odd primes different fromp which have the same Frobenius conjugacy class asr in
Gal(N ′/Q), whereN ′ is the finite extension ofN which results from adjoining the square roots of every unit ofN .
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