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Abstract

We answer a question of M. Flach by showing that there is a linear representation of a profinite group whose universal deforma-
tion ring is not a complete intersection. We show that such examples arise in arithmetic in the following way. There are infinitely
many real quadratic fieldg for which there is a mod 2 representation of the Galois group of the maximal unramified extension of
F whose universal deformation ring is not a complete interseclionite this article: F.M. Bleher, T. Chinburg, C. R. Acad. Sci.

Paris, Ser. | 342 (2006).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Les anneaux de déformation universelle ne sont pas nécessairement d’intersection compl&teus répondons & une ques-
tion de M. Flach en démontrant gu’il existe une représentation linéaire d’un groupe profini dont I'anneau de déformation universelle
n'est pas un anneau d’intersection compléte. Nous montrons que I'arithmétique fournit de tels exemples dans les situations sui
vantes. |l existe une infinité de corps quadratiques rEdisls qu'il existe une représentation du groupe de Galois de I'extension
maximale non-ramifiée d€ sur un corps de caractéristique 2 dont 'anneau de déformation universelle n’est pas un anneau d'in-
tersection complétéour citer cet article: F.M. Bleher, T. Chinburg, C. R. Acad. Sci. Paris, Ser. | 342 (2006).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

In this Note we answer a question of Flach [3] by giving an example of a linear representation of a profinite
group over a field of positive characteristic which has an (unrestricted) universal deformation ring which is not a
complete intersection. To our knowledge, this is the first example of such a representation. In Section 3 we discus:
some arithmetic examples.

2. The non-trivial irreducible mod 2 representation of S4

Theorem 2.1.Let k be a perfect field of characteristic 2, let W be the ring of infinite Wtt vectors over k, and let S4
be the symmetric group on 4 letters. Let V be a non-trivial irreducible k S4-module of dimension 2; V isunique up to
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isomor phism. The universal deformation ring R(Ss, V) of V isisomorphicto W[[¢]1/(z2, 2). In particular, R(Sa, V)
is not a complete intersection ring.

For background on deformation theory, see [4] and [6]. As in [5, §19.3], a commutative local Noetherian ring
R is a complete intersection ring if there is a regular complete local commutative Noetheriah aimdja regular
sequences, ..., x, € S such that the completioﬁ of R with respect to powers of the maximal ideal is isomorphic
t0S/(x1,...,xn).

The fact thatW[[¢]]/(t2, 2¢) is not a complete intersection ring is a consequence of [5, Proposition (19.3.2)], since
the ideal(s2, 2r) cannot be generated by a regular sequence of elements in the regular lodal[fifig To show
R(S4,V) = W[[t]]/(tz, 2t), which is a correction of [1, Proposition 4.2], we need the following lemma, which is a
correction of [1, Lemma 4.1]. The proof is elementary, so we will omit it.

Lemma 2.2.Let W be the ring of infinite Witt vectors over k. Let R be a complete local Noetherian W-algebra for
which thereis exactly one continuous surjection t : R — W of W-algebrasand anisomorphism . : R/2R — k[s]/(s?)
of W-algebras. Then R isisomorphic to W[[t]1/(t?> — 2yt,a2"t), where y € W, « € {0, 1}, 0 < m € Z and either
y=00ra=1.

To prove Theorem 2.1, we notice that by [1, Proof of Proposition 4.2], there is exactly one continuous surjec-
tive W-algebra homomorphism® = R(Ss, V) — W, and R/2R = k[t]/(t%). By Lemma 2.2,R is isomorphic to
WIlt11/(t2 — 2yt, a2™t) for somey ande as in the lemma. Le6G = (u, v, r, s | Rel) with Rel= {2 = v2 =13 =
s2=1 uv=ovu,srs =r L sus =v,svs =u,rur t=v,ror-1= uv}. By lettingu = (1, 2)(3,4), v=(1,4)(2, 3),
r=(1,2,3) ands = (1, 3), we see that; is isomorphic toS;. We now construct a representationG = Sq —
GLo(WI[t11/(z2, 2t)) which mod 2 gives a universal mod 2 deformatiortofDefiner by the following matrices:

w=(5 ) =0 e (2 ) o-(2 )

The reductiort of  mod 2 defines an indecomposablg-moduleU satisfyingtU = V andU /tU = V. It follows
from R(Sa, V)/2R(Sa, V) = k[t]/(t?) thatU is isomorphic to the universal mod 2 deformationvofisk Ss-module.
The reduction of mod () defines a deformation df over W and corresponds to the unique surjectiiss, V) —
W = R(S3, V) mentioned earlier.

Suppose now thak is not isomorphic toW[[¢]]/(t2, 21) so that ife = 1 thenm > 2. Recally =0 ora = 1. To
obtain a contradiction, we need to show there are-rend« as above such that can be lifted toW[[z]]/(z2 —
2y z, a2™z) for a continuoud¥ -algebra homomorphism

viR=WIlzll/(z% = 2yz, a2"z) — WI[t11/(2 21)

which induces an isomorphisRy/2R — k[t]/(t%). One checks that(z) = « for somex € W*, so on replacing by
«~1y we can reduce to the case in whietr) = r. SinceW [[1]]/(:2 — 2y, 4¢) is a quotient algebra d¥[[z]]1/(z% —
2y z,a2™z) through whichv factors, it is enough to show thatcannot be lifted toW[[t]]/(t2 — 2yt,4r) for any
y € W for the canonical projection,, : WIIt11/(t2 — 2yt, 4) — W[[t]1/(t2, 2t) sending to ¢.

This can be seen by looking atu). If ¢ were a lift of t to W{[[¢]]/(t% — 2y1t, 4t) for m,, thent (u) would be
conjugate to a matrix, over W[[¢]]/(2 — 2yt, 4r) which has to satisfy the reIatioAﬁ =1 mod (t2 — 2y1t, 4t),
wherel denotes the identity 2 matrix. An easy matrix calculation shows that this is not possible. Hemesnot
be lifted toW[[¢]]/(t2 — 2yt, 4t) for anyy € W, which implies thatR = R(S4, V) = W[[¢]1/(t2, 21).

3. Capping groups

Definition 3.1. Let £ be a prime number, and suppose there is a short exact sequence
1-K—-T-5G6->1

whereI” and G are profinite groupsy is a continuous group homomorphism akidis a closed normal subgroup

of I'. We sayG caps I" (via ) for £ if there is no closed normal subgroifp of I" satisfyingKg C K and for which

K /Ko is a non-trivial pro¢ group. By considering intersections of conjugate subgroups, this is equivalent to saying
that there is no closed normal subgrakipof K such thatk /K’ is a non-trivial pro¢ group.
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We now relate this concept to deformation theory. For simplicity, we supposelthsdtisfies the following
¢-finiteness condition of Mazur [6]. £ is a perfect field of characteristit; then H(I", X) is finite dimensional
over k for all discrete finite dimensional representatidghover k. By [6], this implies that ifV is a discrete finite
dimensional representation &f overk, the versal deformation ring (I, V) is well defined. If Engdr (V) =k then
R(I', V) is a universal deformation ring.

Suppose now that is the inflation tol” of a representation & which we will also denote by . LetU (1", V) be a
versal deformation oV as a representation &f. The following result is a consequence of Lemma 2.1, Proposition 3.1
and Theorem 3.2 of [2].

Lemma 3.2.Fix a perfect field k of characteristic ¢. Let M (I", G, k) be the set of discrete finite dimensional represen-
tations V of I" over k which are inflated from representations of G. If I" satisfies Mazur’s ¢-finiteness condition, the
following are equivalent:

(a) Thegroup G caps I" via  for ¢.
(b) Thegroup K =Ker(r: I' — G) actstriviallyon U (I, V) for all V. e M(I", G, k).

Inparticular, if G caps I vian for ¢and V € M(TI', G, k), then R(I", V) isisomorphic to the versal deformation ring
R(G, V) of V asa representation of G.

Definition 3.3. Let ¢ be a prime, letG be a profinite group, and ldgt be a number field. Le§ be a finite set of
places ofL. DefineG, s to be the Galois group over of the maximal algebraic extension bfwhich is unramified
outsides.

(a) We sayG caps L for £ at S if G capsG . s for £ via some surjectiol;, s — G.
(b) We sayG caps L for ¢ if there is a set of place$ such thaiG capsG . s for ¢.
(c) We sayG isa capping group for ¢ if G caps some number field for ¢.

The natural question in this context is:
Question 1.Given a primeZ, which profinite groups; are capping groups fd? Which of these ca) for £?

One can phrase various statements in lwasawa theory in terms of capping groups. For example, it follows from
[9, Proposition 10.13] that an odd printeis regular, in the sense thatdoes not divide the class number of the
cyclotomic fieldQ(¢,), if and only if the groupG = Zj /{+1} capsQ for £ at § = {¢}.

Our main result is:

Theorem 3.4.Let G be the symmetric group Ss.

(a) Thegroup G does not cap Q for ¢ = 2.
(b) Thereareinfinitely many real quadratic fields L such that G caps L for ¢ = 2 at the empty set S of places of L.

Part (b) in this theorem is equivalent to the statement that there are infinitely many real quadratit fieids
which there is an unramifieds-extension ofL which has odd class number. An example of such a fielt is

Q(/5-14197).

Corollary 3.5. Let k bea perfect field of characteristic 2, let V beanon-trivial irreducible k S4-module of dimension 2.
There areinfinitely many real quadratic fields L such that

(a) thereisasurjectionw: G g — Sa, and
(b) when V is viewed as a module for Gy via 7, the ring R(GL g, V) = R(S4,V) = WIlt11/(t2, 2¢) is not a
complete intersection.
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The proofs of these results use a Theorem of Tate [8, Theorem 4] which states that every projective representatic
0:Gr — PGLy(C) of the absolute Galois grou@r of a local or global fieldr has a lifting to a linear representation
p:Gr — GL2(C). Different liftings differ by tensoring by a one-dimensional charagtelG r — C*. Part (a) of
Theorem 3.4 results from composing a surjectisf s — G = S4 for some set of place$ of Q with an injection of
S4 into PGLy(C), leading to a projective representatigras above which is unramified outside Tate proves that
one can always construct a liftingof o which is unramified outsid§ U {co}. For a suitable charactgr: Gg — C*,
the kernel ofy ® p defines a subgrouff of Gg,s of the kind needed to show that = S4 does not cag,s for
=2.

To prove part (b) of Theorem 3.4, one starts by letting: Q and S = {p} for a primep =5 mod 8 in the proof
of part (a). After replacing by x ® p, this leads to representatiogsand p of G (). Let N be theSs-extension
Qkemelp) of 9. One can find suclp and for which p is quadratically ramified iv. Letr # p be an auxiliary odd
prime. ThenV (,/pr) is an unramifiedss-extension ofQ(,/pr), and GalN (/pr)/Q(/pr)) = Sa capsGq./pr).0
provided that the class numbex 57 of N(,/pr) is odd.

To showhy( /zr) is odd for a suitablep and r, one can reduce to showing that there is no Galois extension
E of Q containingN (,/pr) which is unramified ovetV(,/pr) and for whichT = Gal(E/N(,/pr)) is a sim-
ple module for the group ringZ/2) Gal(N (,/pr)/Q). If such anE exists, GalE/Q(,/pr)) is an extension of
Gal(N(/pr)/Q(/pr)) =S4 by T, and one can analyze the possible groups which can occur. One then puts con-
ditions onr which preclude the existence of such BnA first step in doing this is to analyze the possible liftings
to GL,(C) of a projective representatic@iQ(ﬁ) — PGLy(C) which has kernel G@/N(ﬁ)). Here one uses
the fact that the restriction of to Gg(_5) is one such lifting, and all liftings differ by twists by a one-dimensional
character oG /). Having found onep andr for which iy /z7) is odd (e.g.(p, r) = (14197 5) according to
Pari [7]) one can show that there is a positive Dirichlet density of primesch thati v 57) is odd. One can take
such a set of to consist of those odd primes different frggrwhich have the same Frobenius conjugacy classias
Gal(N'/Q), whereN' is the finite extension aV which results from adjoining the square roots of every univof
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