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Abstract

We show that if a solutiory(x) of a sub-analytic differential equation admits an asymptotic expa@ﬁill cixt, u; e RT,
then the exponentg; belong to a finitely generated semi-groupRt. We deduce a similar result for the components of non-
oscillating trajectories of real analytic vector fields in dimensiofo cite this article: M. Matusinski, J.-P. Rolin, C. R. Acad.

Sci. Paris, Ser. | 342 (2006).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Séries généralisées solutions d’équations différentielles sous-analytiqudgus montrons que si une solutigrix) d'une
équation différentielle sous-analytique admet un développement asymptotique de 13Tgrme; x*i, u; € R, alors les expo-
santsu; appartiennent & un semi-groupe finiment engendi& tieNous en déduisons un résultat analogue pour les composantes
des trajectoires non oscillantes de champs de vecteurs analytiques réels en dimeRsionciter cet article: M. Matusinski,

J.-P. Rolin, C. R. Acad. Sci. Paris, Ser. | 342 (2006).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let X be an analytic vector field on a real 3-dimensional manifold M. Consider an integral gurve> y (1),
t > 0, of X, supposed to beub-analytically non-oscillating and transcendentghat is, any sub-analytic subset of
positive codimension o#/ has a finite number of intersection points with the suppefof y. Thusy has a unique
w-limit point p. The following desingularization theorem is proved in [1]:

Under the previous hypothesis, there exists a so-calletimissible transformation : (M, 7, p) — (M., y, p)
such that the lifted curve is an integral curve of a vector field with non-nilpotent linear(platentary singularity
of vector field.

A y-admissible transformatiois a finite sequence of blowing-up transformations with non singular center, and
ramified covers. Suppose given a local analytic coordinate systemz) of M with centerp. The non-oscillating

E-mail addressesnmatusin@u-bourgogne.fr (M. Matusinski), rolin@u-bourgogne.fr (J.-P. Rolin).

1631-073X/$ — see front mattérl 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2005.11.005



100 M. Matusinski, J.-P. Rolin / C. R. Acad. Sci. Paris, Ser. | 342 (2006) 99-102

assumption allows to suppose that the suppgrbelongs to the positive quadrant and thais parametrized by.
A key step in the proof is the following result (Proposition 2 of [1]):

Suppose that the axis= y = 0is not invariant by the vector fiel#l. Consider the projectiofx, y(x)) and assume
that y(x) has an asymptotic expansign:,c;x* (u; € Ry) with respect tor. Then the exponents; belong to a
finitely generated semi-group &f, .

Note that if the exponents; are rational numbers, the proposition gives a (possibly divergent) asymptasieux
expansionof y(x). Consider for example an irrational numher> 0 and a solutionH (x) of the Euler equation
x2y’ =y —x, defined forx > 0. Thenz(x) = x H (x*) is the third component of a trajectory of the vector field defined
by x = xy, y =ay?, z=az—axy + yz. The asymptotic expansion ofx) at the origin is a divergent power series
whose exponents are irrational numbers belonging to the semi-group generated hy.1 and

The main goal of the present Note is to prove-dimensional version of the previous result:

Theorem 1.1.Let X be a analytic vector field on a real analyticdimensional manifoldZ, andy be sub-analytically
non-oscillating and transcendental integral curveXof Let p be the limit point ofy, and consider a local analytic
coordinate systerntx, ..., x,) with centerp, such thaty | is included in the positive octant andadmits a parame-
trization x1 > (x1, x2(x1), ..., x,(x1)). If any component of admits an asymptotic expansidn:-, c,»x’l“ , then the

exponents; belong to a finitely generated semi-grouprof .

In [1], this result follows from a two steps elimination process. Asswrley., 11 > 2. The first step shows that the
components of (x) = (x, y(x), z(x)) and their derivatives up to order 2 satisfy a system of two analytic equations.
The second step uses the hypothesis on thexaxisy = 0, in conjunction with a property of analytic mappings
(see [4]), to eliminate (x) between the two equations. Therefore the componéntsatisfies an analytic differential
equationR (x, y(x), xy’(x), x2y” (x)) = 0. It implies that the exponenis; belong to a finitely generated semi-group
of R.. Such a result, which generalizes both [2] and [3], is proved in [1].

Our approach is a generalization in any dimension of this process of an elimination followed by a resolution. The
whole elimination step, which is performed in Section 2, does not lead anymore to an analytic differential equation
but to asub-analytic differential equatiof.he properties of the exponents ofjeneralized power seriasghich is the
asymptotic expansion of a solution of a sub-analytic differential equation are investigated in Section 3.

2. From vector fields to sub-analytic differential equations

Proof of Theorem 1.1. The proof follows [1]. Up to a ramification — x4, for ¢ € N big enough (which would
not affect the conclusion of the theorem), we may assume- n — 1. With the notation of the introduction, the
vector fieldX is given, in the coordinate systes, ..., x,), by n analytic differential equations, wherg means
differentiation with respect to the time x; = a;(x1,...,x,), i =1,...,n. These equations obviously imply that
the components,(x1), ..., x,(x1) satisfy the equations; (x1, ..., xn)x//. =aj(x1,...,x), j =2,...,n, wherex’,
means the derivative with respectitn Let us perform(n — 2) times the following operations: compute the derivative
of the first equation, and eliminate(x1), ..., x,(x1) in this equation with the help of remaining ones. We get a
system of analytic differential equatiorfs(xy, x2(x1), .. ., xé”’l) (x1), x3(x1), ..., x,(x1)), j =2, ..., n.

The projection of the analytic subsgtof R?*~1 defined in a neighborhood of the origin by the equatighs-
...= f, =0 on the spac®"*! x {0}"~2 is a sub-analytic set(A). Therefore there exists a sub-analytic function

H such that the non-oscillating curwe — (x1, x2(x1), ..., xé"_l) (x1)) satisfies the equatioH = 0. It implies that

the functiong : x1 — xl_(”_l)xz(xl), whose asymptotic expansion Ec,-x’l“"(”’l), is solution of a sub-analytic
differential equationf (x1, ¢(x1), x¢'(x1), ..., x" 2D (x1)) = 0.
Theorem 1.1 is therefore a consequence of the result of the next section.

3. Generalized power series solutions of sub-analytic differential equations

Theorem 3.1.Let f be a sub-analytic function defined in a neighborhood of the origiR"6f2. Consider an element
¢ of a Hardy field at the origin oR ., solution of the equatiorf (x, ¢(x), x¢'(x), ..., x"¢"™ (x)) = 0. If ¢ admits
an asymptotic expansiop(x) = Y 2, cix*i, u; € R%, lim;_o = 400, then the exponents; belong to a finitely
generated additive semi-group &f, .
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Our approach is in some sense an extension of the classical Newton’s polygon (more exactly Fine's polygon)
method, used in [1-3]. Indeed, we show that the usual transformations of the formal power series, induced by the
slopes of such a polygon, reduce the initial sub-analytic equation to an analytic differential equation. Let us recall
what happens in the analytic case. For any convergent power series:

o, Jo J
F(x,uo,ug, ..., uy) = E Fijo,o jnX gy - uy"
i,jO,m-,]-n

where the exponentg belong to a finitely generated semi-groudiof, and thejy, are positive integers, the classical
analysis of theNewton—Fine’s polygoof F leads to the following conclusion:

e either F(x, p(x),...,x"¢"™ (x)) = 0 and the exponentg; of its expansionp belong to a finitely generated
semi-group ofR ;

e Or else there exists an integky, a positive real numbey and an analytic unitU defined in a neighborhood
of the origin such that, if we defing; by ¢(x) = Zf.‘il cixti 4 xM@1(x), then F(x, p(x), ..., x" o™ (x)) =
xYU@&PL, o xPs o1 (x), .. .,x"wi")(x)), with y, B1, ..., B; € R%. In that case, we say that the pafr, ¢) is
monomializable

Proof of Theorem 3.1. It relies on the previous Fine’s polygon method and on a description of sub-analytic functions,
which arises, for example, from [5] or [6]. Consider the sub-analytic funcfiaf the statement of the theorem. It
can be described as a finite composition of the three following types of applications:

(i) an analytic functionF': vV — R, whereV is a neighborhood of the origin &”, p € N,
(i) aramificationx — x", forx € Ry andr € Q,
(iii) the division functionD defined oriR? by D(x, y) = ;—‘ if |y| > |x|, andD(x, y) = 0 otherwise.

This allows to proceed by induction on toemplexityof f, defining a sub-analytic function to ls&mplerthan f if
it is involved in the above description gf. We actually prove that the above dichotomy still holds for p&ftsp),
where f is a sub-analytic function, which obviously implies the theorem.

1. If fis an analytic function, we already recalled that the dichotomy holds.

Suppose now thaf is a sub-analytic function, and that the result has been proved for sub-analytic functions simpler
than f.

2. Supposef = f], with r € Q4, and f1 simplerthan f. If f1(x,¢(x), .. ., x"@™(x)) = 0, we conclude by the
induction hypothesis. Otherwise, the p@fi, ¢) is monomializable, as well as the paif, ¢).

3. Suppose thaf = F(f1,..., fi), with F analytic andfi, ..., f; are sub-analytic functions simpler thgn If
¢ is a solution of one of the differential equatiorfg(x, ¢(x), . .., x"@™(x)) = 0, we conclude by the induction
hypothesis. Otherwise, it is clear that the pdifs, ¢), ..., (fi, ¢) aresimultaneously monomializabl&herefore p1
defined byp(x) = S5, ¢;xi + x" g1 (x) is a solution of:

F(xlel(x, e, x"(pin)(x)), o Ul(x, e x"(pi”)(x))) =0,
whereUsy, ..., U; are analytic and the;’s belong toR .. This equation can be written as:

Fa(xP, o xPs o1(x), x@) (x), .. x”goi") (x)) =0,

whereF; is analytic and the8;’s belong toR ..
4. Suppose finally that = D( f1, f2), wherefi, f2 are simpler tharf. Once again, if the pairsfi, ¢) and( f2, ¢)
are simultaneously monomializable, we get:
UL, @1 (0), . 3" (1))
X2Up(x, @1(x), ..., " (x))

flx @), ... . x""(x) =

with y1 > y2 andUj, Uz analytic. This shows that the pdif, ¢) is also monomializable. O
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