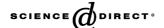


Available online at www.sciencedirect.com



C. R. Acad. Sci. Paris, Ser. I 341 (2005) 593-596

http://france.elsevier.com/direct/CRASS1/

Logique

Note sur les corps différentiellement clos valués

Nicolas Guzy

Institut de mathématique, Université de Mons-Hainaut, le Pentagone, 6, avenue du Champ de Mars, B-7000 Mons, Belgium Reçu le 20 juillet 2005 ; accepté le 9 septembre 2005

Présenté par Jean-Yves Girard

Résumé

Dans le papier de Guzy et Point, Differential topological fields, on établit la modèle-complétion $(OVF)_D^*$ de la théorie des corps différentiels ordonnés valués OVF_D . Les modèles de cette théorie sont des corps ordonnés différentiellement clos (la théorie CODF fut étudiée par Singer) qui possèdent un sous-anneau non trivial convexe (pour l'ordre) comme anneau de valuation. Nous établissons ici l'analogue valué d'un résultat de Singer : si K est un modèle de $(OVF)_D^*$ alors K(i) ($i^2 = -1$) est un modèle de la théorie des corps différentiellement clos valués qui est la modèle-complétion de la théorie des corps différentiels non trivialement valués de caractéristique nulle. *Pour citer cet article : N. Guzy, C. R. Acad. Sci. Paris, Ser. I 341 (2005).* © 2005 Académie des sciences. Publié par Elsevier SAS. Tous droits réservés.

Abstract

Note on differentially closed valued fields. In the paper by Guzy and Point, Differential topological fields, the model-completion $(OVF)_D^*$ of the theory of ordered valued differential fields OVF_D is established. Models of this theory are closed ordered differential fields (the theory CODF was studied by Singer) which have a non-trivial convex (for the order) subring as valuation ring. Here we prove the valued analogue of a result of Singer: if K is a model of $(OVF)_D^*$ then K(i) ($i^2 = -1$) is a model of the theory of differentially closed valued fields which is the model-completion of the theory of non-trivially valued differential fields of characteristic zero. To cite this article: N. Guzy, C. R. Acad. Sci. Paris, Ser. I 341 (2005).

1. Introduction

Soit A un domaine commutatif de caractéristique nulle. Une *relation de divisibilité linéaire* (l.d. relation) sur A est une relation binaire $\mathcal{D}(\cdot, \cdot)$ sur A telle que :

 \mathcal{D} est transitive, $\neg \mathcal{D}(0, 1)$, compatible avec + et., notamment $\mathcal{D}(a, b)$ et $\mathcal{D}(a, c)$ implique $\mathcal{D}(a, b+c)$, et pour tout $c \neq 0$, on a $\mathcal{D}(a, b)$ implique $\mathcal{D}(a.c, b.c)$, et soit $\mathcal{D}(a, b)$ ou $\mathcal{D}(b, a)$. Une l.d. relation \mathcal{D} sur le domaine A induit un anneau de valuation \mathcal{O}_A du corps de fraction F := Frac(A) de A:

$$\mathcal{O}_A = \left\{ \frac{a}{b} : a, b \in A, \ b \neq 0, \ \mathcal{D}(b, a) \right\}.$$

Adresse e-mail: nicolas.guzy@umh.ac.be (N. Guzy).

La valuation correspondante $v_{\mathcal{D}}$ sur Frac(A) est définie par :

pour tout
$$a, b \in A$$
, $v_{\mathcal{D}}(a) \leq v_{\mathcal{D}}(b) \iff \mathcal{D}(a, b)$.

On a une bijection entre l'ensemble des l.d. relations et l'ensemble des sous-anneaux de valuation de Frac(A) (voir Section (4.2) dans [3]).

Soit $\mathcal{L}_{\mathcal{D}}$ le langage des corps ordonnés valués c'est-à-dire $\mathcal{L}_{\text{corps}} \cup \{<, \mathcal{D}, c\}$ où < est la relation binaire d'ordre pour les corps, \mathcal{D} est une l.d. relation et c est le symbole constant qui témoigne d'un élément de valuation non nulle. Soit $\mathcal{L}_{\mathcal{D}}^*$ le langage $\mathcal{L}_{\mathcal{D}} \cup \{D\}$ où D est le symbole de dérivation. On va s'intéresser aux corps ordonnés valués $\langle K, <, v, c \rangle$ où l'anneau de valuation, qu'on note par \mathcal{O}_K , est convexe pour l'ordre c'est-à-dire il y a une relation de compatibilité qui s'exprime de la manière suivante :

$$\forall x, y \quad 0 < |x| < |y| \Rightarrow \mathcal{D}(y, x).$$

Cette $\mathcal{L}_{\mathcal{D}}$ -théorie sera notée OVF. Nous savons que la $\mathcal{L}_{\mathcal{D}}$ -théorie des corps réels-clos valués RVF (voir [1]) est la modèle-complétion de la $\mathcal{L}_{\mathcal{D}}$ -théorie universelle OVF.

Dans [2], nous avons établi la modèle-complétion $(OVF)_D^*$ de la \mathcal{L}_D^* -théorie des corps différentiels ordonnés valués, notée OVF_D . Cette modèle-complétion consiste en la \mathcal{L}_D^* -théorie CODF (voir [5]) et les axiomes de la \mathcal{L}_D -théorie OVF.

Rappelons brièvement l'axiomatisation de la $\mathcal{L}^*_{\mathcal{D}}$ -théorie $(OVF)^*_{D}$:

- la $\mathcal{L}_{\mathcal{D}}$ -théorie RVF,
- le schéma d'axiomes (DL) pour les corps ordonnés différentiels. Pour un corps différentiel ordonné valué $\langle K, D, <, c \rangle$, le schéma (DL) dit que : pour tout polynôme différentiel $f(X) = f^*(X, X', \dots, X^{(n)})$ d'ordre n dans $K\{X\}$, pour tout ϵ in $K^{>0}$, $(\exists \alpha_0, \dots, \alpha_n \in K)(f^*(\alpha_0, \dots, \alpha_n) = 0 \land s_f^*(\alpha_0, \dots, \alpha_n) \neq 0) \Rightarrow ((\exists z)(f(z) = 0 \land s_f(z) \neq 0 \land \bigwedge_{i=0}^n (|z^{(i)} - \alpha_i| > \epsilon)))$ où f^* est le polynôme f vu comme polynôme ordinaire en les variables $X, X', \dots, X^{(n)}$ et s_f^* est la dérivée partielle du polynôme f^* en la variable non différentielle $X^{(n)}$.

Soit K un modèle de $(OVF)_D^*$. Nous allons montrer que le corps différentiel valué K(i) où $i^2 = -1$ (D(i) = 0) est un modèle de la théorie des corps différentiels algébriquement clos valués satisfaisant le schéma d'axiomes (DL) (voir Définition 2.1). Ce schéma (DL) a été introduit dans un formalisme purement topologique dans [2] afin d'obtenir en particulier la modèle-complétion de la théorie des corps non trivialement valués munis d'une dérivation (voir [2, Corollaire 5.2]).

2. Le schéma d'axiomes (DL)

Dans la suite, nous utilisons la terminologie usuelle en ce qui concerne l'algèbre différentielle et la théorie de la valuation. Nous désignerons en particulier par s_f le séparant du polynôme différentiel non nul f en une indéterminée différentielle et f^* sera le polynôme f vu comme un polynôme ordinaire en les variables $X, X^{(1)}, \ldots, X^{(N)}$ où N est l'ordre en la variable différentielle X du polynôme différentiel f.

Rappelons le schéma d'axiomes (DL) dans le cadre des corps différentiels valués.

Définition 2.1. Un corps différentiel valué $\langle L, D, v \rangle$ satisfait le schéma (DL) si pour tout polynôme différentiel $f(X) = f^*(X, X', \dots, X^{(n)}) \in \mathcal{O}_L\{X\}$ d'ordre n, pour tout $\epsilon \in \mathcal{O}_L \setminus \{0\}$,

$$(\exists \alpha_0, \dots, \alpha_n \in \mathcal{O}_K) \Big(f^*(\alpha_0, \dots, \alpha_n) = 0 \land s_f^*(\alpha_0, \dots, \alpha_n) \neq 0 \Big) \Rightarrow$$
$$\Big((\exists z) \Big(f(z) = 0 \land s_f(z) \neq 0 \land \bigwedge_{i=0}^n \Big(v(z^{(i)} - \alpha_i) > v(\epsilon) \Big) \Big) \Big).$$

Définition 2.2. Soient $\langle L, v \rangle$ un corps valué et $\langle \hat{L}, w \rangle$ une extension de corps valué de $\langle L, v \rangle$. Considérons un élément \hat{l} de \hat{L} . On dit que \hat{l} est infinitésimal par rapport à L si $v(\hat{l}) > v(L^{\times})$ où $v(L^{\times})$ est le groupe des valeurs de L.

Rappelons d'abord un résultat classique d'extension des dérivations qui sera utile dans la preuve de notre théorème.

Lemme 2.3 (voir Corollaire 1.7 dans [4]). Si V est une variété et W est une sous-variété du torseur de V, noté $\tau(V)$, toutes deux définies sur le corps différentiel K, et W se projettant de façon dominante sur K. Si (\bar{a}, \bar{b}) est un point générique de la variété W alors la dérivation de K s'étend en une dérivation de $K(\bar{a}, \bar{b})$ satisfaisant $D(\bar{a}) = \bar{b}$.

Prouvons maintenant le théorème précédemment annoncé qui est l'analogue valué du Théorème de Singer (voir [6]).

Théorème 2.4. Soit K un modèle de $(OVF)_D^*$. Alors K(i) est un corps algébriquement clos valué qui satisfait le schéma d'axiomes (DL) (K(i) sera donc différentiellement clos valué).

Démonstration. Puisque K est en particulier un corps réel-clos, on obtient que K (i) est un corps algébriquement clos valué (puisqu'on peut étendre la valuation à toute extension algébrique d'un corps valué).

Pour que K (i) soit un modèle du schéma d'axiomes (DL), on doit montrer que si f(Z) est un polynôme différentiel d'ordre N à coefficients dans $\mathcal{O}_{K(i)}$ et (a_0,\ldots,a_N) est un N-uplet d'éléments de $\mathcal{O}_{K(i)}$ tel que $f^*(a_0,\ldots,a_N)=0$ et $\frac{\partial f^*}{\partial Z^{(N)}}(a_0,\ldots,a_N)\neq 0$ alors pour tout ϵ dans $\mathcal{O}_{K(i)}\setminus\{0\}$ il existe un élément z dans K (i) tel que f(z)=0 et $\sum_{j=0}^{N}v(z^{(j)}-a_j)>v(\epsilon)$.

Substituons $Z_1 + i \cdot Z_2$ à Z (où Z_1 et Z_2 sont de nouvelles indéterminées différentielles) et on écrit f(Z) comme $f_1(Z_1, Z_2) + i \cdot f_2(Z_1, Z_2)$ où $f_1(Z_1, Z_2)$ et $f_2(Z_1, Z_2)$ sont des polynômes différentiels en les indéterminées différentielles Z_1, Z_2 . De même, pour tout $j \in \{0, \dots, N\}$, on peut écrire a_j comme $b_j + i \cdot c_j$ pour certains éléments b_j, c_j dans K. Considérons un élément ϵ dans $\mathcal{O}_K \setminus \{0\}$.

Nous prouvons maintenant que la théorie suivante est consistante :

 $OVF_D \cup \mathcal{D}(K)$ où $\mathcal{D}(K)$ est le diagramme de K, et il existe des éléments z_1, z_2 tels que $f_1(z_1, z_2) = f_2(z_1, z_2) = 0$ et $\bigwedge_{j=0}^N v(z_1^{(j)} - b_j) > v(\epsilon) \land \bigwedge_{j=0}^N v(z_2^{(j)} - c_j) > v(\epsilon)$.

Dès lors la preuve sera terminée. En effet, considérons un modèle K' de cette théorie. Une copie de K sera contenue dans K'. En utilisant le fait que $(OVF)_D^*$ est la modèle-complétion de la OVF_D , on pourra plonger K' dans un modèle \widehat{K} de $(OVF)_D^*$. Puisque $K \prec_{\mathcal{L}_D^*} \widehat{K}$, il existe donc des éléments u_1, u_2 dans K tel que $f_1(u_1, u_2) = f_2(u_1, u_2) = 0$ et $\bigwedge_{j=0}^N v(u_1^{(j)} - b_j) > v(\epsilon) \land \bigwedge_{j=0}^N v(u_2^{(j)} - c_j) > v(\epsilon)$. En posant $u = u_1 + i \cdot u_2 \in K(i)$, on en déduit aisément que $f(u) = 0 \land s_f(u) \neq 0 \land \bigwedge_{i=0}^n v(u^{(i)} - a_i) > v(\epsilon)$.

En effet, cela découle directement de la définition de f_1 , f_2 et du fait que $v(u^{(i)} - a_i) \ge \min\{v(u_1^{(j)} - b_j), v(u_2^{(j)} - c_i)\} > v(\epsilon)$.

Prouvons donc la consistance de cette théorie.

Nous allons considérer une extension élémentaire suffisamment saturée de corps ordonnés valués non différentiels $\langle \widehat{K}, <, \widehat{v} \rangle$ de $\langle K, <, v \rangle$. On va d'abord construire un corps ordonné valué L étendant K puis on étendra les dérivations de K à L. Par la saturation de \widehat{K} , il existe 2N éléments algébriquement indépendants sur K et infinitésimaux par rapport à K qui appartiennent à l'anneau de valuation $\mathcal{O}_{\widehat{K}}$, disons $u_0, v_0, \ldots, u_{N-1}, v_{N-1}$.

On définit de nouveaux éléments d_j et e_j dans $\mathcal{O}_{\widehat{K}}$ pour tout $j \in \{0,\dots,N-1\}$ de la manière suivante : $d_j := b_j + u_j$ et $e_j := c_j + v_j$. Dès lors, les éléments d_i, e_i ($i \in \{0,\dots,N-1\}$) sont algébriquement indépendants sur K. Maintenant, on considère les polynômes $\widetilde{f}(Z) = f^*(a_0,\dots,a_{N-1},Z)$ et $\widetilde{g}(Z) = f^*(d_0+ie_0,d_1+ie_1,\dots,d_{N-1}+ie_{N-1},Z)$ qui sont à coefficients dans $\mathcal{O}_{\widehat{K}(i)}$. Alors a_n est une racine simple de $\widetilde{f}(Z)$. Puisque les d_i et e_i sont infinitésimaux par rapport à K, cela entraine que, dans $\widehat{K}(i)$, $\widetilde{g}(a_N) > v(K^\times)$ et $v(\widetilde{g}'(a_N)) = v(\widetilde{f}'(a_N) \in v(K(i)^\times) = v(K^\times)$ (qui est le groupe de valeurs de K). Comme \widehat{K} est réel clos, $\widehat{K}(i)$ est algébriquement clos et ceci implique que $\widehat{K}(i)$ est hensélien. On en conclut donc qu'il existe une unique racine $\alpha \in \widehat{K}(i)$ de $\widetilde{f}(Z)$ satisfaisant $v(\alpha - a_N) > v(K^\times)$ (par le lemme de Hensel). Soient $d_N, e_N \in \widehat{K}$ tels que $\alpha = d_N + ie_N$. On obtient aussi que $v(b_N - d_N)$ et $v(c_N - e_N)$ sont infinitésimaux par rapport à K.

Maintenant on va étendre la dérivation de K au corps ordonné valué engendré par les solutions de nos polynômes f_1 et f_2 afin d'obtenir les solutions différentielles requises. Pour cela nous utilisons le Lemme 2.3. Considérons la variété $V = A^{2N}$ qui est le locus du point $(d_0, e_0, \ldots, d_{N-1}, e_{N-1})$ sur K (puisque ces points sont algébriquement indépendants sur K) et la variété W qui est le locus du point $(d_0, e_0, \ldots, d_{N-1}, e_{N-1}, d_1, e_1, \ldots, d_N, e_N)$ sur K. Dès

lors, la variété W est une sous-variété du torseur de V, qui se projette de façon dominante sur V. Par le Lemme 2.3, on peut étendre la dérivation D de K à $K(\bar{d},\bar{e})$ de telle manière que $D(d_i)=d_{i+1}$ et $D(e_i)=e_{i+1}$ pour $0 \le i < N$. \square

Remerciements

Je tiens aussi à remercier vivement Françoise Point qui m'encadre régulièrement dans tous mes travaux.

Références

- [1] G. Cherlin, M. Dickmann, Real-closed rings. II. Model theory, Ann. Pure Appl. Logic 25 (3) (1983) 213–231.
- [2] N. Guzy, F. Point, Topological differential structures, soumis, version électronique: http://www.logique.jussieu.fr/www.point/papiers/tfields_rev5.pdf.
- [3] A. Macintyre, K. McKenna, L. van den Dries, Elimination of quantifiers in algebraic structures, Adv. in Math. 47 (1) (1983) 74-87.
- [4] A. Pierce, D. Pillay, A Note on the axioms for differentially closed fields of characteristic zero, J. Algebra 204 (1) (1997) 108–115.
- [5] M.F. Singer, The model theory of ordered differential fields, J. Symbolic Logic 43 (1) (1978) 82–91.
- [6] M.F. Singer, A class of differential fields with minimal differential closures, Proc. Amer. Math. Soc. 69 (2) (1978) 82–91.