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Abstract

We derive a new stabilized finite element method for the generalized Stokes problem starting from the non-stable continuous
P, /P4 finite element space enriched with multiscale functions. The stabilization parameter is related with the enrichment func-
tions which are analytically computed from a boundary value problem at the element level leading to a method which is free of
constants. Optimal error estimates are obtained in natural norms and numerical tests validate theTmeitiedbis article: G.R.
Barrenechea, F. Valentin, C. R. Acad. Sci. Paris, Ser. | 341 (2005).
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Résumé

Relation entre I'enrichisement multi-échelles et les méthodes d'éléments finis stabilisées pour le probleme de Stokes
généralisé.On propose une nouvelle méthode d’éléments finis stabilisée pour le probléme de Stokes généralisé basée sur I'enri
chissement de I'espace d'éléments finis coniqulP4 par des fonctions multi-échelles. Le parametre de stabilisation est donné
par la moyenne de la fonction d’enrichissement sur I'élément, qui a son tour est calculée analytiquement par la résolution d'un pro-
bléme aux limites dans chaque élément. Des estimations d’erreurs optimales sont obtenues et des tests numériques sont présen
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Version francaise abrégée

Dans ce travail, on s'intéresse au développement et a I'analyse numérique d’'une nouvelle méthode stabilisée (S
pour le probleme de Stokes généralisé. On étend la technique d’enrichissement des espaces polynomiaux propos
dans [4], de fagon a enrichir 'espace d’éléments finis continu non skal®; par de nouvelles fonctions multi-
échelles, solutions de (12), (13). Ensuite, on montre I'équivalence entre cette approche et une méthode d’élémen
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finis stabilisée, ou le parameétre de stabilisation est obtenu analytiquement par la moyenne de la fonction multi-échel
sur I'élément (18). Pour cela, on utilise des projectifRdocales sur I'espace des fonctions constantes. On démontre
que le probléme discret est bien posé dans le Lemme 4.1, et des estimations optimales dans les normes naturelles
presentées dans le Théoréme 4.2. Finalement, on valide les résultats théoriques par un test numérique qui démontr
précision et la stabilité de la méthode (Fig. 1).

1. Introduction

Numerical methods for the generalized Stokes problem based on the finite element method are limited by th
compatibility condition (or inf-sup condition) between velocity and pressure spaces [3]. On the other hand, spuriou:
oscillations may also appear due to the singular perturbation in the reaction-dominated regime. It is well known tha
stabilized finite element methods applied to the Stokes operator allow us to adopt equal order pair of spaces ft
velocity and pressure even if they do not satisfy the inf-sup condition. Some light on the origin of such methods,
as well as on the design of stabilization parameters, has been proposed in the last ten years, and was mainly ba:
on equivalence to enriching classical spaces with bubble functions. The theoretical framework of such analogy wa
derived in [1] for the Stokes equations, and furthermore extended for the generalized Stokes model in [2]. Howevel
the stabilized finite element methods arising from bubble condensation presented an important drawback, namely tl
fact that the bubble function to be condensed was not known analytically, and hence the condensation procedure |
to a stabilization parameter that was not known exactly. In order to correct this drawback, in this work we extend the
Petrov—Galerkin approach introduced in [4] to the generalized Stokes problem. Beginning by enrictigPthe
continuous space with multiscale functions which are no longer bubble-like ones, and performing static condensatiol
we develop a new stabilized finite element method containing a stabilization parameter which is exactly known.

The outline of this Note is as follows. Section 2 includes the model and the enrichment strategy. The stabilizec
method is proposed and derived in Section 3 and analyzed in Section 4. Finally, in Section 5 we present a numeric
validation of the proposed method.

2. The model problem and multiscale enrichment

Let £2 be an open bounded domaini? with polygonal boundaryf e L?(£2)? and let us consider the following
generalized Stokes problem: Fid, p) such that
Lu+Vp=f, V-u=0 ing,
u=0 onods, Q)
wherelu :=ou —vAu, ando, v € RT denote the reaction term and the fluid viscosity, respectively. Let{Ggyy-o

be a family of regular triangulations a2, build up using triangle with boundarydoK = F1 U F> U F3, hg =
diam(K) andh :=maxXhg: K € T,}. Let

Vi = [v e C%2): vlx e P1(K), VK €Ty},
andVy :=[VyN H&(Q)]Z, Qn:=VyN L%(Q) be the finite element spaces used to approximate velocity and pressure,
respectively. Letd1(7;,) and H&(‘I ») be the spaces of functions whose restrictiokte T, belongs toH1(K) and
H&(K), respectively. Furthermore,, - ) p stands for the inner product i?(D) (or in L2(D)?2, when necessary), and
we denote byl- [ls.p (|- |s.p) the norm (seminorm) i * (D) (or H*(D)?, if necessary).

In order to propose the Petrov—Galerkin method for Stokes problem (B let H1(7},) be a finite dimensional
space, called multiscale space, such that E;, = {0}, and we will only suppose by now thay, is such that problem
(3) below admits a solution. Then, our scheme re&sl u; € Vj,, u, € [E,)? and p1 € Qy, such that

a(ui+ue, vp) — (p1. Vovp)e + (g1, V- (w1 + ue)) , = (f . vi) e,
for all v, € V;, ® [H}(T1)12 and allgs € Qp, wherea(u, v) := o (u, v)o + v(Vu, Vo). Now, this Petrov—Galerkin
scheme is equivalent to the following system:
a(uy+ue, v1) — (p1. V-v1)e + (q1. V- (w14 1)), = (f . v))e  V(v1.q1) €V x O, (2)
a(u1+ue, vp)k — (p1. V-vp)k = (f.vo)k Vv, € Hy(K)?, VK €Ty, (3)
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where the subindek stands for integration ovef . Eq. (3) above may be written in strong form in the following way
Lu,=f—(Lur+Vp1) ink. 4)

Now, this differential problem above must be completed with boundary conditions. In order to correct also the residual
of the strong equation in the boundaryKf we impose the following boundary condition ap:

u,=g, OnF;, i=123, (5)
whereg, is the solution of
0i8, —Viss8, = f — (Lu1+Vp1) inkFj, g.,=0 onthe nodes (6)

wheres;, i =1, 2, 3, is independent df, and will be specified later, arfj denotes the tangential derivative operator.
In this way, we can define an operafdiy : L2(K)? — H(K)? such that

ul :=u.lx =Mk (f —Lu1—Vp1) VK €Ty, (7)
thus with the characterization (7), problem (2) reads

> la(uws — Mg (Lua+ Vp1), v1) g — (p1, V-vi)k + (g1, V- (w1 — Mg (Lus + V1)) ]
KeTy

=(f.oDe— Y [aMg o0k — (9. V-Mk ) ] Y(@1.91) € Vi x Op. (8)

KeTy

We first remark that (7) provides a precise definition for spage indeed, we can now writ¢E,] := {v €
HY(T3)%: Jv1 e P1(K)?, v =Mk (v1)}, which clearly is a finite dimensional space. Next, we remark that the method
(8) is clearly consistent. From now on, we will suppose that this method leads to a well posed problem. For the
reaction—diffusion equation this fact has been rigorously justified in [4] and we will address this issue in a future
work. Here, we are interested in the formal derivation of a stabilized finite element method from (8) and in its numer-
ical analysis.

3. The stabilized finite element method

We begin by presenting the stabilized finite element method: &indp1) € V, x Qy, such that
B((u1, p1). (v1,91)) =F(v1,91) V(v1,91) € Vi x O, 9)

where
B((u1, p1). (v1,91)) :=a(u1,v1) — (p1, V-v)e + (g1, V-u1)o — Z g (Lus + Vp1, Lvy — V),
KeT,

F(v1,q1) == (f,vD)e — Y & (f,Lv1—Va)k,
KeT),

and the stabilization parameter is given by (denotingbthe edge opposed to the nage

3
1 1 1 40 |K |2
==|1- —————|, whereq; := ) 10
® a[ ;(& Olismr(ai)>:| nerea: \V vIFI? (10)

3.1. Derivation of the method

In this section, we intend to perform the formal derivation of the stabilized method (9). First, for simplicity we will
suppose thaf is a piecewise constant function and tfiatcontains only equilateral triangles, even if the method (9)
was proposed and will be analyzed for genefand regulafl,. The first step is to replace in our formulatiop by

it :=Mg(f —Luy— Vp1) =bg(f —Lug— Vp), (11)
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where, for a functiorv, v denotes its projection onto tfi(K) space, i.e.p := (v, 1) /|K|, and from (7) bk is the
solution of the reaction—diffusion problem

Lbxy =1 inkK, bg =g OnNJK, (12)
where, fori =1, 2, 3,
0ig —vdsg=1 inF;, g =0 onthe nodes (13)

We further remark that, sineg does not depend d, this functionbk satisfies
bk llo.x <ChY and bk lloax < Chy?, (14)

whereC > 0 is a positive constant depending possiblysoandv, but independent of.
Next, in order to design a stabilized finite element method we integrate by parts and we have &nedgch

v(Vit,, Vo) g = —v(lte, Av)) g + (e, V01K, (g1, V-it) g = — (e, Vg k + (e, q1l-n)yx,

wherel is theR?*? identity matrix, and using these identities we can rewrite (2) in the following way

a(u1,v1) — (p1, V-v1)o + (q1, V-ug + Y [(e, Lv1 — Vg1 k + (e, vduv1 + 1l - m)sk ]
KeTy

=(f,vDe. (15)

Now, we will see that we can actually neglect the boundary terms since they are of the order of the method. Indeec
we first remark that from the definition &f (see below), then if the triangles are equilateral thigp, 1), /| F;| =
(bk,Dyk /10K |. Using this fact, andl, d,v)yx = 0 (for v € P1(K)), it turns out that

* bk, Vi (bk, Dok
(it VO V)oK = ) #(f —Luy —Vp1,v0,v1)F, = |8’7K|(f —Luy —Vp1,v0,v1)9x =0,
i=1 !
which shows that the first boundary term in (15) vanishes. In order to bound the other terihéethe projection of
g1 in K, then, using the approximation properties of the projection (see [3]), &incg1l-n)yx = 0, and from (14)
and Cauchy-Schwarz’s inequality we arrive at

(ile, q1l-m)sx = (b (f — Litr — Vp1), (g1 — Gl n),, < Chi |l f — Litr — Vpalloxlgil1k-

Using (14) again and analogous arguments, we haveibat (v1 — v1))x < Ch:;’( |f —Lui— Vpilloxklvilik,
and hence, using (11) and the orthogonality of the projection the following approximation is justified

_ o (bk. D) _
3 (e o1 =Ygk & Y (e, L1~ Vag)k = Y — 0 (f — Lty — Vp1, Loy — Va)k.

|K|
KeTy KeTy KeTy

Collecting all the previous results, we can present the following stabilized finite element method for (1): Find
(u1, p1) € Vi x Qj, such that

bg,1 _
. v) = (p1, V0002 + (g1, V- = 3 T (i Vi Lon = Va
KeTy
(bk, Dk
=(fivDe— Y, —=—(f,Lvi—Vak V(v1,q1) € Vi x Oy (16)

K|

Since we want to present a stabilized finite element method with a classical structure, we replace the added terms
K by (Lui + Vg1, Lvy — Vq1) k, which introduces a new source of error, again of a smaller size.

We observe that in order to fully present the method it only remains to give an expression for the stabilization
parameterg. Let v;, i = 1,2, 3, be the barycentric coordinates of the elemgntWe first remark that the edges
F;, i =1,2,3, are numbered such thaf|r, = 0. Then, clearly g = Z?:l b’k Whereb"K is the solution of

KeTy

Lb', =y; inK,
Gibte — vdgsbly = in F; b'. =0 on the nodes
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where, suggested by [4], we have made the chaice- o (s¥i)2/yi, wherey; = (8v;/9x)% + (3y;/9y)? =
|F;12/(41K|?). Let us choos,; := ; — obi,. Then,;, i = 1,2, 3, solves

Li;=0 Iink,
giri — VA =0 inF;, A =Y; onthe nodes

and it turns out that this is the same problem from [4] with solution

sinh(o; ;) [o
ri(x,y)=————= whereq; = | —. 17
i(x,y) sinh(e; ) 87 - (17)
Finally, from the last computations we see that the stabilization parametsrgiven by
3 3
(bg, Dk 1 1 1
) |K| U|K|< ; l )K U|: |K|; l K:|

and since we have an explicit solution for, last integrals may be calculated analytically, obtaining the expression
(10) fortg.

4. Stability and convergence analysis

Before performing the stability analysis, let us remark that, using (14), the stabilization parampetatisfies
% < Ch% , where the constarit may depend on andv, but not onz. Next, we define the following mesh dependent
norm

|1 = > [o@—ow)lvald g +vivald ¢ +txlgal ¢ ] (19)
KeTy,

and using the fact that2 o ¢ > 0 in eachK € T;, we can state the following stability result.

Lemma 4.1.The discrete probler(®) has a unique solution since the bilinear foBrsatisfies
2
B((v1.91). (v1.q1) = ||(v1.q0) ||, V(v1.q1) € Vi x Qh.

Finally, using the previous result, appropriate interpolation inequalities (cf. [3]) and the asymptotic behayior of
we can prove the following optimal convergence result.

Theorem 4.2.Let us suppose thaP is a convex polygon, that, p) € [H2(£2) N H}(£2)1? x (H1(£2) N L3(£2)) is
the solution of(1) and that(u1, p1) € V;, x Qy, is the solution of(9). Then there exist§ > 0, independent o, such
that

l@—u1, p—p1)|, <Ch(lulze +IplLe).  lIp—piloe <Ch(lulze +|plLe)
le —uillo,e < Ch*(Julz.0 +pl1e).
We finally remark that we have not explored at this stage the influence of physical constants on the error. This

matter, as well as a detailed error analysis between the original Petrov—Galerkin method (8) and our actual stabilizec
finite element method (9), will be the subject of a future research.

5. Numerical experiments

We asses the lid-driven cavity problem, with domain= (0, 1) x (0, 1), f =0, and we perform experiments
with v = 1 andv = 107>, both usings = 1. We depict in Fig. 1 elevations for the pressure field (lefs 1) and of
the tangential velocity (right; = 10~°). We observe the absence of oscillations in both cases, which shows that the
method prevents spurius oscillations of the pressure and captures correctly the boundary layers.
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TANGENTIAL VELOCITY

PRESSURE FIELD

Fig. 1. Pressure field (left, = 1) and tangential velocity (right, = 10~2).
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