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Abstract

The Schrodinger equation with a time dependence in both a quadratic and a quartic potential is considered. Existence of solution
is shown and a rigorous Feynman path integral representation for the solution is given in terms of well-defined infinite-dimensional
oscillatory integralsTo cite this article: S. Albeverio, S. Mazzucchi, C. R. Acad. Sci. Paris, Ser. | 341 (2005).
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Résumé

I ntégrales de cheminsde Feynman pour un oscillateur quartique dépendant du temps. On étudie une équation de Schrodin-
ger avec une dépendence temporelle dans un potentiel quadratique ainsi que dans un potentiel quartique. L'existence de solutio
est démontrée ainsi qu'une représentation en termes d’integrales de chemins de Feynman, définis rigoureusement comme intégra

oscillatoires en dimension infini®our citer cet article: S. Albeverio, S. Mazzucchi, C. R. Acad. Sci. Paris, Ser. | 341 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

The present Note concerns the rigorous mathematical realization for the Feynman path integral representation o
the solution of the Schrédinger equation, describing the time evolution of theystate?(R?) of a d-dimensional
non-relativistic quantum particle

2

. h
gy =—o-AY + VY, )

¥ (0, x) = Yo(x)

(wherem > 0 is the mass of the particlg,is the reduced Planck constant: 0, x € R?). We consider the case where
the potentialV depends explicitly on the time variableand is the sum of an harmonic oscillator part plus a quartic
perturbation:

V()= %xQZ(I)x +aA()C(x, x, x, x), 2)
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where$2 andx are respectively’! maps from the interval0, 1] to thed x d symmetric positive matrices ariit,
while C is a completely symmetric positive fourth order covariant tensdRbanda a positive constant.
In 1942 R.P. Feynman proposed a heuristic representation for the solution of Schrédinger equation (1). Accordin:
to Feynman’s alternative formulation of quantum mechanics, the state of the system atgigieen by an integral
over the space of pathswith fixed end point:

) -1 )
Yt x) = ( / ef'fWDy) / "5 Mo (y (0) Dy 3)
{yly(@)=x}

(whereS;(y) =% 5 Iy (s)|2ds — fO’ V (s, y(s))ds is the classical action of the system evaluated along the jpath
and Dy an heuristic “flat” measure). The study of rigorous mathematical definitions of the heuristic formula (3)
begun in the 1960s and nowadays several approaches can be found in the physical and in the mathematical literatu
The potentials which could be handled mathematically for a long time were only essentially of the type “harmonic
oscillator plus perturbations which are Fourier (or Laplace) transforms of measures”. In [2] the situation was changec
allowing effectively polynomially growing potentials. In the present Note we further extend these results to allow time
dependent potentials of the type (2) by means of infinite-dimensional oscillatory integrals with polynomially growing
phase function, a well defined class of functional integrals recently developed in [1,2]. (For a general discussion o
time dependent potentials and references see e.g. [3].) The first step is the construction and the study of the family
evolution operators associated to Eq. (1). In the following we shall assume for notation simplicity-hat but the

whole discussion can be generalized to arbitrary values of the malset us denote byH () the symmetric linear

operator onL?(R%) given onC° (RY) by

H(t):—gA—l-V(t), (4)

where the potentiaV (¢) is given by (2).

Proposition 1. Letz € C be a complex parameter witRe(z) < 0. Then, under the assumptions above on the poten-
tial V in (2), the operatorsH () have a common domaiP and there exists a two parameter family of operators
U(t,s): L°(RY) — L2(RY), 5,1 € R, such that

Us(r,s)U%(s,t) = U*(r, 1);

U, 1) =1,

U%(z, s) is jointly strongly continuous inands;

if Y € D, theng(r) := U*(t, s)y is in D for all r and satisfies

d
Ed)f(t) =zHD)g5(1), i) =1,

and|lgg ()|l < [l | forall 7 > s.
Moreover ifRe(z) = 0, then the operator&<(z, s) are unitary.

Proof. First of all one has to prove that the time-dependent Hamiltonian operatansin (4) have a common
domainD. Then, under the regularity assumptions on the na@sd, it is simple to see that for eagh e L2(R9),

(t —s)"Y(H@)H(s)~1 — Dy is uniformly strongly continuous and uniformly boundedsiand: lying in any fixed
compact subinterval dR. MoreoverA(1)y = limgy, (r — s)"Y(H(t)H (s)~1 — Iy exists uniformly fors, ¢ in each
compact subinterval and(¢) is bounded and strongly continuoustinThe final result follows from Theorem X.70
in[4]. O

Let D be the subset of the complex plane givenDy= {z € C, Re(z) < 0} and letD be its closure. For any
¥, ¢ € D(H(t)) = D, let us define the functioni : D — C given by

f@ =y, U, 9)9).
The following holds:
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Proposition 2. f is analytic onD and continuous of.

Let us consider two vectord, Yo € L2(R?) that are Fourier transforms of complex bounded variation mea-
sures onR?. More precisely letug be the complex bounded variation measureRshsuch thatiig = o (with *
denoting Fourier transform). Let, be the complex bounded variation measure ®h such that fig(x) =

(2rin)4/2e 7 'X‘Zq_ﬁ(x). Under suitable growth conditions @, g and if the timer is sufficiently small itis possible
to give a well-defined mathematical meaning to the Feynman path integral representation of the weak solution of (1)

(¢,¢(r))=/¢3(x) / e%sf(”llfo(y(o))Dy dx (5)
R4 {yly(t)=x}

as the analytic continuation (in the parametgof an infinite-dimensional generalized oscillatory integral on a suit-
able Hilbert space (see [2,1]). Let us consider the Hilbert sgéaee R? x H;, where H; is the Hilbert space of
absolutely continuous paths: [0, ] — R?, with y (0) = 0 and inner producty1, y») = fé y1(s)y2(s) ds. Let us con-
sider the operatok : H — H given by:

(x,y) = (y,n) =L(x,p),

t !
y= / Q%(t —s)xds + f %t — s)y(s)ds,
0 0

S

n(s):—f/ Qz(t—r)xdrdu—// Q2 —r)y(r) drdu, (6)
01t 0t

and the fourth order tensor opera®igiven by:

B((x1, y1). (x2, ¥2), (x3, ¥3), (x4, v4))
t

Z/K(I—S)C(Vl(S)JrXL y2(s) + x2, y3(s) + x3, ya(s) + xa) ds. (7)
0

Let us denote by? the following quantity

2= max|2@¢—s)|.
s€[0,¢]

The following holds:

Theorem 3. Let us assume that the following inequalities are satisfied

— T — —
2t < > 1-— Qtan(£2t) > 0. (8)
Let us assume in addition that the measuyrgsu, satisfy the following assumption
¢ g p
hoo-1 5 5010 (1—O 5:)—1 5 —1
//e4x9 tan(.Qt)xe(y+cos(.Qt) x)(1—82 tan(£2t)) ~~(y+cog§21) x)|MO|(dX)|M¢|(dy) < o0, (9)
RY R4

Then, ifa < 0 the infinite-dimensional oscillatory integral

i 2 2 i i i 2 -
(2nih)"/2/e2'*h<"" Hr P g3 (o L@ g FBEN N e C e3P 5 (o (y (1) + x) dx dy (10)
H
is well defined and is equal to the following absolutely convergent integral
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(ih)d/z / eiahfé At=5)C(w(s)+x,0(s)+x,0(s)+x,w(s)+x) ds

Ri xC,
Xe%fé(a)(s)+x).(22(t—s)(w(s)-{-x)dcé(éﬂ/4ﬁx)wo(ein/4ﬁw(t)+eiﬁ/4\/ﬁx)w(dw)dx (11)

(C; being the space of continuous pathis,= {w € C([0, t]; R?) | ¥ (0) = 0}, and W the Wiener measure onit
Moreover, ifa > 0, the analytic continuation ie of the integral(11) represents the scalar product betwefand
the solution of the Schrédinger equation with initial datygand Hamiltonian(4).

Proof. The first statement is an application of the theory in [2]. The second statement follows by Proposition 2 and
the Feynman—Kac formula for the solution of the heat equatian.
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