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Abstract

Let G be a connected noncompact simple Lie group acting isometrically on a connected compact pseudoRiemann
fold M. Denote withn0 andm0 the dimension of the maximal null subspaces tangent toG andM, respectively. Then we alway
haven0 � m0. Our main result states that, ifn0 = m0, then theG-action is, up to a finite covering, an algebraic action. We
this to obtain a complete characterization of a large family ofG-actions, thus providing a partial positive answer to the conjec
proposed in Zimmer’s program for pseudoRiemannian manifolds.To cite this article: R. Quiroga-Barranco, C. R. Acad. Sci.
Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Géométrie pseudoRiemannienne et actions des groupes de Lie simples.SoitG un groupe de Lie simple non compact conne
agissant isométriquement sur une variété pseudoRiemannienne compacte connexeM. Dénotez avecn0 et m0 la dimension des
sous-espaces nuls maximales tangents áG et M, respectivement. Alors nous avons toujoursn0 � m0. Notre résultat principa
déclare que, sin0 = m0, alors le action deG est, jusqu’à une revêtement finie, une action algébrique. Nous employons cec
obtenir une caractérisation complète d’une famille nombreuse de actions deG, de ce fait fournissant une réponse positive parti
à la conjecture proposé dans le programme de Zimmer pour le variété pseudoRiemannienne.Pour citer cet article : R. Quiroga-
Barranco, C. R. Acad. Sci. Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let G be a connected noncompact simple Lie group acting on a connected compact manifoldM preserving a finite
smooth measure. Robert Zimmer formulated in [11] the problem of classifying such actions. Moreover, it was
ered in [11] the problem of proving that any suchG-action can be built out of algebraicG-actions. The latter are give
by double cosetsK\L/Γ , whereL is a Lie group into which there is a nontrivial homomorphismG → L, Γ is a lat-
tice andK is a compact subgroup that centralizes the image ofG in L. TheG-action is then given by left translation
The formulation of this problem is known as Zimmer’s program. Following several key works (see [3–5,13
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current research towards solving this problem considers actions ofG that preserve some sort of geometric struct
The work of both Gromov and Zimmer shows that rigid structures in the sense of Gromov (see [4]) are part
useful. Among such structures, the pseudoRiemannian metrics are one of the more natural to consider. In
we take this as our starting point to provide a contribution to Zimmer’s program for actions preserving a ge
structure.

It is well known thatG carries bi-invariant pseudoRiemannian metrics. Hence, ifG acts onM preserving a
pseudoRiemannian metric, we can compare the geometries of both spaces and use this to try to classify
we denote byn0 andm0 the dimension of maximal lightlike tangent subspaces ofG andM , respectively, then two
basic facts appear. The numbern0 is an invariant ofG andn0 � m0 for any isometricG-action. In this Note we
announce a result that completely characterizes thoseG-actions for whichn0 = m0. This should be compared wi
a work of Bader and Nevo (see [1]) where a result similar in spirit is obtained for actions preserving a con
pseudoRiemannian structure, though our methods are completely different.

2. Actions of simple Lie groups on pseudoRiemannian manifolds

Our first result is the following:

Theorem 2.1.Let G be a connected noncompact simple Lie group. IfG acts faithfully and topologically transitivel
on a compact manifoldM preserving a pseudoRiemannian metric such thatn0 = m0, then theG-action onM is
ergodic and engaging, and there exist:

(1) a finite coveringM̂ → M ,
(2) a connected Lie groupL that containsG as a factor,
(3) a cocompact discrete subgroupΓ of L and a compact subgroupK of CL(G),

for which theG-action onM lifts to M̂ so thatM̂ is G-equivariantly diffeomorphic toK\L/Γ . Furthermore, there
is an ergodic and engagingG-invariant finite smooth measure onL/Γ .

In our arguments below, we assume thatG andM satisfies the hypotheses of Theorem 2.1. To prove this resu
first obtain an isometric splitting of a covering ofM . The first step towards such splitting is given by the follow
result.

Lemma 2.2.The groupG acts everywhere locally freely with nondegenerate orbits. The metric induced byM on the
G-orbits is given by a bi-invariant pseudoRiemannian metric onG that does not depend on theG-orbit. Moreover,
the normal bundle to theG-orbits is integrable.

The proof of this result proceeds as follows. Everywhere local freeness is obtained from the results in [4] or
also [10]). This allows us to trivialize the tangent bundle to theG-orbits and by considering the action on its ergo
components we can prove that suchG-orbits are nondegenerate as a consequence of the conditionn0 = m0 together
with the simplicity ofG. Denote withTO⊥ the normal bundle to theG-orbits. Then it is easy to prove thatn0 = m0
implies thatTO⊥ is definite. A curvature operator is then introduced for the bundleTO⊥, which is the obstruction
for the integrability ofTO⊥. By following the proofs of Lemma 9.1 and Theorem 9.2 in [2] (or the arguments
[4]), we can obtain, at almost every point inM , a Lie algebra of local Killing fields isomorphic tog (the Lie algebra
of G) that vanish at the given point. Using this and the fact thatTO⊥ is definite, we can prove the vanishing of t
curvature operator and thus the integrability ofTO⊥ follows. Then by considering a leafN of the foliation induced
by TO⊥ we prove the following result. It is a consequence of both the completeness ofG andN .

Proposition 2.3.The mapG × N → M obtained from the restriction of theG-action toN is an isometric covering
map. Moreover, there is a discrete subgroupΓ0 of Iso(G × Ñ) such that(G × Ñ)/Γ0 → M is a finite covering.

The next step is to investigate the structure of the isometry group ofG with a bi-invariant metric. The relevan
result is the following.
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Proposition 2.4. The isometry groupIso(G) has finitely many components andIso(G)0 = L(G)R(G), the group
generated by the left and right translations. Moreover, for any connected complete Riemannian manifoldÑ the group
Iso(G × Ñ) has finitely many connected components andIso(G × Ñ)0 = L(G)R(G) × Iso(Ñ)0.

This is proved by studying the properties ofG as a pseudoRiemannian symmetric space. It also require
application of the de Rham–Wu decomposition theorem for pseudoRiemannian manifolds. Then we prove
topological transitivity of theG-action onM is enough to show that Singer’s Theorem (see [7]) can be appli
conclude that̃N is a homogeneous pseudoRiemannian manifold, sayÑ = K\H , with H a connected Lie group an
K a compact subgroup.

The above argument together with Propositions 2.3 and 2.4 provide a finite covering spaceM̂ = (G × K\H)/Γ

of M , whereΓ is a discrete subgroup ofL(G)R(G)×H . Furthermore, we can prove that theG-action lifts toM̂ and
use this to prove thatΓ is actually a subgroup ofR(G) × H = G × H . By definingL = G × H we find that most of
Theorem 2.1 has been proven.

To complete the proof of Theorem 2.1 it only remains to show that theG-actions onM andL/Γ are ergodic and
engaging. ForM this is achieved by studying the properties of the transverse (definite) pseudoRiemannian s
of theG-orbits and applying Molino’s machinery. ForL/Γ we apply similar techniques, but we actually have to t
a further finite covering that replacesL, Γ andM̂ so that the ergodic and engagement conditions are satisfied.

We observe that Theorem 2.1 has no rank restrictions onG, but provides no precise information on the struct
of the groupL. For higher real rank groups we have the following result, which provides a complete descrip
the groupL that occurs in Theorem 2.1 and so an important improvement towards Zimmer’s program for
preserving a geometric structure.

Theorem 2.5.Let G be a connected noncompact simple Lie group with finite center andrankR(G) � 2. If G acts
faithfully and topologically transitively on a compact manifoldM preserving a pseudoRiemannian metric such
n0 = m0, then there exist:

(1) a finite coveringM̂ → M ,
(2) a connected isotypic semisimple Lie groupL with finite center that containsG as a factor,
(3) a cocompact irreducible latticeΓ of L and a compact subgroupK of CL(G),

for which theG-action onM lifts to M̂ so thatM̂ is G-equivariantly diffeomorphic toK\L/Γ . Hence, up to fibration
with compact fibers,M is G-equivariantly diffeomorphic toK\L/Γ andL/Γ .

The proof of Theorem 2.5 builds on the conclusions of Theorem 2.1. By using the ergodicity obtained from
are able to apply the main result in [8] to conclude that theG-action is essentially free on̂M and that it is free onL/Γ .
Given this, we then apply the main result in [12] to conclude thatL is semisimple. With such arguments, and giv
the techniques of [12], we observe that Theorem 2.5 ultimately depends on Zimmer’s cocycle superrigidity. N
apply the structure theory of semisimple Lie groups to show that the ergodicity of theG-action onL/Γ implies that
Γ has a finite index subgroupZ of the center ofH . By modding out byZ we can assume thatL has finite center
Then we apply the structure theory of finite center semisimple Lie groups to prove thatΓ is irreducible and thusL is
isotypic.

3. A classification theorem for actions of simple Lie groups

Our final result proves that the conditionn0 = m0 completely characterizes a large family of algebraic actions,
providing a partial positive answer to the conjecture proposed in Zimmer’s program for actions preserving a ge
structure.

Theorem 3.1.Let G be a connected noncompact simple Lie group with finite center andrankR(G) � 2. Assume tha
G acts faithfully on a compact manifoldX. Then the following conditions are equivalent.
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(1) There is a finite coverinĝX → X for which theG-action onX lifts to a topologically transitiveG-action onX̂

that preserves a pseudoRiemannian metric satisfyingn0 = m0.
(2) There is a connected isotypic semisimple Lie groupL with finite center that containsG as a factor, a cocompac

irreducible latticeΓ of L and a compact subgroupK of CL(G) such thatK\L/Γ is a finite covering ofX with
G-equivariant covering map.

The proof relies on Theorem 2.5 for one direction of the equivalence, and an easy construction of a suitab
on double cosetsK\L/Γ as above for the other direction. A number of consequences can be obtained fro
theorems. We can also extend our arguments to finite volume manifolds. Such results, with a detailed accou
proofs presented here, will appear in [6].
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