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Abstract

We define a certain quotient of the étale fundamental group of a scheme which classifies étale coverings with bounded
ramification along the boundary, and show the finiteness of the abelianization of this group for an arithmetic $otoiime.
thisarticle: T. Hiranouchi, C. R. Acad. Sci. Paris, Ser. | 341 (2005).
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Résumé

Finitude des groupes fondamentaux abéliens avec ramification bornéBlous définissons un certain quotient du groupe
fondamental étale d'un schéma qui classifie les revétements étales a ramification bornée le long du bord, et démontrons la
finitude de ce groupe rendu abélien pour un schéma arithmébqueciter cet article: T. Hiranouchi, C. R. Acad. Sci. Paris,

Ser. | 341 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let X be a connected normal Noetherian scheman effective Weil divisor ofX and the set of irreducible
components oD. PutQ := {a, a+ | a € Q>1}, wherea+ is just a formal symbol. For anty= (a1, ..., a,) € o,
we define a fundamental grom}f(x, D) which is a quotient of the étale fundamental grayypX \ D). It classifies
coverings ofX which are étale ovek \ D and of ramification bounded hyalong D (see Definition 2.3 below).
If the schemeX is regular, themll(X, D) =m1(X) for 1:=(1,...,1). For a generak, we havenlli(X, D) =
nR®Me(X, D) for 1+ := (1+, ..., 1+), wherex2MX, D) is the tame fundamental group defined in Exposé XIlI
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of [3]. To definenf(x, D), we employ the ramification filtration defined by Abbes and Saito in [1]. Our main
theorem is the following.

Theorem 1.1.Letk be a finite extension @ and X a normal scheme of finite type and faithfully flat over the ring
of integersO of kK whose geometric generic fibér ®» k is connected. Then, the abelianized fundamental group
n1(X, D)3 is finite for any effective Weil divisap of X anda € Q'.

The above theorem is a generalization of the finiteness result in [6] proved by Katz and Lang for étale funda-
mental groups, and the recent result in [7] of Schmidt for tame fundamental groups.

Throughout this Note, we assume that all schemes are Noetherian. For any schareadenote byOy its
structure sheaf. For any fieki, we denote byk S¢Pthe maximal separable extensionfofwithin a given algebraic
closurek of K. Finally, we assume that any separable extensioki &f contained ink SeP.

2. Fundamental groups with restricted ramification

Let K be a complete discrete valuation field, aiig the absolute Galois group &f. Using techniques of rigid
geometry, Abbes and Saito [1] defined a decreasing filtratis) .-, by closed normal subgrougs; of G .
The filtration coincides with the classical upper numbering ramification filtration shifted by one, if the residue field
of K is perfect (see [8], §1V.3 for the classical case). We defi{é to be the topological closure ¢f,., Gl;(,
whereb denotes a rational number. In particul@r}( is the inertia subgroup o ¢, andG}<+ is the wild inertia
subgroup oiG .

Definition 2.1.Let L/K be a separable extension. For any Q, we say that theamification ofL/K is bounded
bya if G% C G, whereL is the Galois closure of /K .

This definition is compatible with Definition 6.3 of [1]. Basic properties of the filtratiGrf} )scq., imply the
following assertions:

Lemma 2.2.LetL/K andL’/K be separable extensions which have ramification boundedd@.
(1) For any subextensioM /K of L/K, the ramification of\//K is bounded by:.
(2) The ramification of the composite field.’/K is bounded by:.

Let X be a connected normal scheme &nhd normal scheme. We say that a generically étale morpHissn X
is acoveringof X if it is finite and every irreducible component &f dominatesX. Let D be an effective Weil
divisor of X andé&y, ..., & the generic points of the irreducible componentgofThen, the local rin@y ¢, is a
discrete valuation ring inducing a discrete valuatigron the function fieldc(X) of X. We denote by Ox )"
its completion with respect to;. Let Y’ := Y xx Spe&(Ox.g)"). If the coveringl — X is étale overx \ D, the
total ring of quotients of " (Y’, Oy-) is afinite direct sum of complete discrete valuation figlgswhich are finite
separable extensions of the fraction fi&dof (Ox ¢)".

Definition 2.3. Let the notation be as above, and det= (a1, ...,a,) € Q'. The coveringr — X is said to be
of ramification bounded by along D, if it is étale overX \ D and, for each =1, ..., r, the ramification of the
extensiond.;; /K; is bounded by;; for all ;.

By the above definition, a coveririg— X is of ramification bounded by * (1, ..., 1) along D if and only if
it is étale above points i of codimension 1 and étale above ovek D. Similarly, the ramification of a covering
Y — X is bounded by 4 := (1+, ..., 1+4) along D if and only if it is tamely ramified alond in the sense of
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Definition 2.2.2 in [4]. Note, however, that this may not be true if we adopt Schmidt’s definition of a tame covering
(cf. [4], Example 1.3).
In the same way as in Lemma 2.2.5 of [4], we can see that Lemma 2.2 (1) implies the following assertion:

Lemma 2.4.Let f:Y — X be a covering, and leg:Z — Y be a surjective covering. If the ramification of
fog:Z— Xisbounded by along D, then so isf.

Let Cove'(X) be the category of etale coverings Xf andCov*(X, D) the category of coverings of which
have ramification bounded kyalong D. The categonCov®'(X) is a full subcategory o€ov&(X, D).

As in the proof of Theorem 2.4.2 in [4], Lemmas 2.2(2) and 2.4 imply the existence of fiber products and
guotients respectively in the categd@pv4(X, D). Choose a point € X which is not inD, and take a geometric
point& : Spec2 — x, wheres2 is a separably closed extension of the residue field &lfe define a fiber functor
F by F(Y) =Homy (Specf2, Y) for anyY € Cov¥(X, D). Then, we can prove the following theorem:

Theorem 2.5.The categonfCov&(X, D) together with the fiber functaF is a Galois category.

Now, we define our fundamental groupf—(X, D; &) (or simply nf(X, D)) to be the fundamental group of
this Galois category (cf. Théoreme 4.1 in Exposé V of [3]). From Proposition 6.9 in Exposé V of [3], we have
the following surjective homomorphismsi(X \ D) — nf(X, D) — m1(X). The categor)Covli(X, D) is the
category of tamely ramified coverings &f along D, and we haver11—+(X, D) = n2M&(X, D). If we assume the
schemeX is regular, the theorem of Zariski-Nagata on the purity of the branch locus (cf. [3], Exposé X, Théoré-
me 3.1) implies(:ovi(X, D) = Covét(X) and hencerll(X, D) =m1(X).

3. Proof of Theorem 1.1

We basically follow the proof of Schmidt's theorem (cf. [7], Theorem 3.1). For any open subscliehe
U := X\ D such thatx \ V is an effective Weil divisor, there exists a surjective homomorphi%(ﬂ(, X\V)—
nf(X, D) for someb € Q7 andJ D I. Therefore, shrinking/ if necessary, we may assume tliatis smooth
over S := Sped). Let S C S be the image ot/. There are a surjective homomorphiem(U) — nf(X, D) and a
natural homomorphism{ (X, D) — 71(S). Consider the following commutative diagram:

0——=KerU/S) ——= 1 (U)P——=11(5)3

| L

0—=Ker(X/S) —= (X, D)®P—— 71 (5)2,

Here, the groups Keét//S) and KekX/S) are defined by the exactness of the corresponding rows, and the two
right vertical homomorphisms are surjective. By the classical class field theory, the grasid® is finite, and
the kernel of the homomorphism ($)2® — 71(5)20 is topologically finitely generated. In addition to this, the
group KexU/S) is finite by Theorem 1 of [6]. Since(U)2P andnf(X, D)@ are topologically finitely generated
Abelian groups, it is enough to show that KEy'S) is torsion. Furthermore, it is known thaf (U)2 — 71(S)®is
surjective by Lemma 2(2) of [6]. By the snake lemma, it is sufficient to show that the col@mieKer(U/S) —
Ker(X/S) is torsion.

Let K be the function field ofX, andk’ the maximal Abelian extension @fsuch that the normalizatioK g/
of X in Kk’ is of ramification bounded by along D. This is equivalent to saying that is the compositum of
all the finite extensions of which appear as the fraction fields of the integral closureS of Oy for Y — X
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in CoV(X, D). Note that the normalization of in k' is ind-étale. Letk” be the maximal subextension bf/ k
such that the normalizatio$y» of S in k” is étale overS. Then, Galk”/k) = 71(S)@ and, by the snake lemma,
C ~ Gal(k’/k"). To prove the assertion, it is sufficient to shéfyk” does not contain & ,-extension of” for
any prime numbep. Sincek”/k is a finite extension ankl / k is Abelian, it is enough to show that/k does not
contain & ,-extension. So, we assume thatk contains & ,-extensiork../ k. A Z ,-extension ok is unramified
outsidep and at least ramified at one primpealividing p (cf. [5], 86, Lemma 4). Since the normalization $in

k' is ind-étalep € S\ S. From the assumption, the primpes in the image ofX — S. By the definition of¢’, the
normalization ofX in Kk, has ramification bounded layalong D. This carries over to the local situation, which
contradicts the following lemma:

Lemma 3.1.Let R be a complete discrete valuation ring with fraction figldf characteristidd and perfect residue
field of characteristipp > 0. Let X be a normal faithfully flat scheme of finite type ovewhose geometric generic
fiber is connected, an® a Weil divisor ofX containing an irreducible component of the closed fitigrof X.
Then, for a ramified ,-extensiork, of k, the ramification ofX ®p, Ok, — X is not bounded along.

For any point3 e DN X, of codimension 1, leK be the completion of the function field X) at’3. We assume
the ramification ofk k. /K is bounded by some € Q. By Theorem 1.9 of [2], there exists a finite extensigit
such that the extensiokik overk is weakly unramifiedi.e., a uniformizing element dfis a uniformizing element
of Kk. Lemma 6.5 of [1] implies the ramification of the composite figltk., over K k is bounded byie, wheree
is the ramification index ok k/ K . Changing the base field froknto k, we shall consider the problem overthus
we writek, ko, K, etc., instead of, kk~, kK, etc. Hence, the extensidf/ k is regular and weakly unramified.
Replacingk by the maximal unramified subextensionof,/k, we may supposé../k is totally ramified. Let
k, be the unique subextension kf,/ k such that the extension degreepis overk. Since the extensiok /k is
regular, we have GéKk, /K) ~ Gal(k,,/ k), andK &y k, >~ Kk,. Then, an Eisenstein polynomigle Oy[T] for
the extensiotk, / k remains to be Eisenstein ov&r, and we hav&k, = Ok [T1/(f). In this case, the differents
Dk, k Of ky /k andD gy, /x Of Kk, /K are both generated by (zr,) for some uniformizing element, of k,,, and
we havev, (Dy, /1) = vk Dk, k), Wherevg, vg are the normalized valuations bf K, respectively. Lemma 6.6
of [1] says that, if the ramification oK'k, /K is bounded by: € Q, thena > vk (D, k). However,vy (D, /«)
tends to infinity ast — oo (cf. [9], 83, Proposition 5).

References

[1] A. Abbes, T. Saito, Ramification of local fields with imperfect residue fields, Amer. J. Math. 124 (5) (2002) 879-920.

[2] H.P. Epp, Eliminating wild ramification, Invent. Math. 19 (1973) 235-249.

[3] A. Grothendieck, Revétements étales et groupe fondamental (SGA 1), in: Séminaire de Géomeétrie Algébrique du Bois-Marie 1960-1961,
in: Lecture Notes in Math., vol. 224, Springer-Verlag, Berlin, 1971.

[4] A. Grothendieck, J.P. Murre, The Tame Fundamental Group of a Formal Neighbourhood of a Divisor with Normal Crossings on a Scheme,
Lecture Notes in Math., vol. 208, Springer-Verlag, Berlin, 1971.

[5] K. lwasawa, OrZ;-extensions of algebraic number fields, Ann. of Math. (2) 98 (1973) 246-326.

[6] N.M. Katz, S. Lang, Finiteness theorems in geometric class field theory, Enseign. Math. (2) 27 (3—4) (1981) 285-319 (with an appendix by
Kenneth A. Ribet).

[7] A. Schmidt, Tame coverings of arithmetic schemes, Math. Ann. 322 (1) (2002) 1-18.

[8] J.-P. Serre, Corps locaux, Deuxiéme édition, Publications de I'Université de Nancago, vol. VI, Hermann, Paris, 1968.

[9] J.T. Tate,p-Divisible groups, in: Proc. Conf. Local Fields, Driebergen, 1966, Springer, Berlin, 1967, pp. 158-183.



