

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 341 (2005) 175-178

http://france.elsevier.com/direct/CRASS1/

Systèmes dynamiques

Fractals de Rauzy

Ali Messaoudi 1

Departamento de Matemática, Unesp-Universidade Estadual Paulista, Rua Cristovão Colombo, 2265, Jardim Nazareth, CEP 15054-000, São José de Rio Preto, SP, Brasil

Reçu le 7 avril 2005 ; accepté après révision le 12 juin 2005

Présenté par Étienne Ghys

Résumé

Nous étudions les propriétés arithmétiques et topologiques d'une classe de fractals de Rauzy. En particulier nous donnons une paramétrisation des frontières de ces ensembles et nous montrons que ceux-ci sont des quasi-disques. *Pour citer cet article : A. Messaoudi, C. R. Acad. Sci. Paris, Ser. I 341 (2005)*.

© 2005 Académie des sciences. Publié par Elsevier SAS. Tous droits réservés.

Abstract

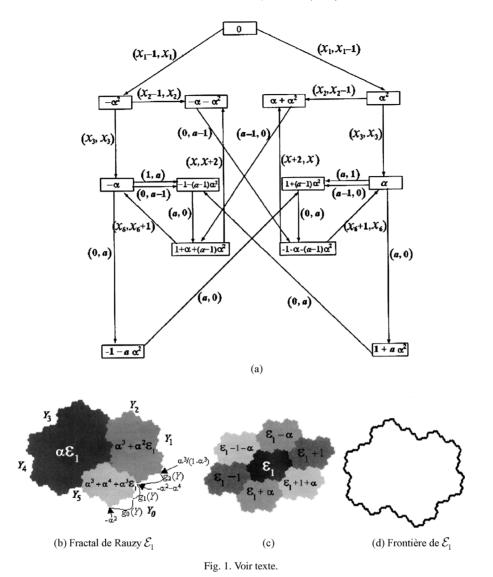
Rauzy fractals. We study arithmetical and topological properties of a class of Rauzy Fractals. In particular, we give a parametrization of the boundaries of these sets and show that they are quasi-disks. To cite this article: A. Messaoudi, C. R. Acad. Sci. Paris, Ser. I 341 (2005).

© 2005 Académie des sciences. Publié par Elsevier SAS. Tous droits réservés.

Soient a un entier naturel non nul et $(F_n)_{n\geqslant 0}$ la suite récurrente définie par : $F_0=0$, $F_1=0$, $F_2=1$, $F_{n+3}=aF_{n+2}+F_{n+1}+F_n$ $\forall n\geqslant 0$. Il est connu, en utilisant l'algorithme glouton que tout entier naturel n s'écrit d'une manière unique comme $n=\sum_{i=2}^N \varepsilon_i F_i$ où $(\varepsilon_i)_{2\leqslant i\leqslant N}\in \mathcal{D}$, où \mathcal{D} est l'ensemble des suites $(\varepsilon_i)_{2\leqslant i\leqslant K}$ tel que $K\geqslant 2$ et pour tout $i\geqslant 2$, $\varepsilon_i=0,1,\ldots,a$, et le mot $\varepsilon_i\varepsilon_{i-1}\varepsilon_{i-2}$ vérifie la relation $\varepsilon_i\varepsilon_{i-1}\varepsilon_{i-2}<_{\text{lex}}$ a11 pour tout $i\geqslant 4$, avec des conditions initiales $\varepsilon_3\varepsilon_2<_{\text{lex}}$ a1, $\varepsilon_2< a$ (car $F_3=a$ et $F_4=aF_3+F_2$) où $<_{\text{lex}}$ est l'ordre lexicographique. On considère le polynôme $P_a(x)=x^3-ax^2-x-1$. Ce polynôme a une racine réelle $\beta>1$ et deux racines α et $\overline{\alpha}$ complexes de module <1. Au polynôme $P_a(x)$, on peut associer un ensemble $\mathcal{E}_a\subset \mathbb{C}$ défini par $\mathcal{E}_a=\{\sum_{i=2}^{+\infty} \varepsilon_i \alpha^i | \forall N\geqslant 2, (\varepsilon_i)_{2\leqslant i\leqslant N}\in \mathcal{D}\}$. Le plus connu des ensembles \mathcal{E}_a est l'ensemble \mathcal{E}_1 (Fractal de Rauzy). Il a été introduit par Rauzy [7] et a fait l'objet de plusieurs études (voir par exemple [2,4,5,8]). L'ensemble \mathcal{E}_a a plusieurs propriétés. Il est compact, connexe [7] et il induit un pavage périodique de \mathbb{C} modulo $\mathbb{Z}+\mathbb{Z}\alpha$. L'ensemble

Adresse e-mail: messaoud@ibilce.unesp.br (A. Messaoudi).

¹ Financé par une bourse du CNPq-Brazil, 302298/2003-7.



 \mathcal{E}_a constitue aussi une représentation géométrique du système dynamique associé à la substitution σ définie sur l'alphabet $A = \{1, 2, 3\}$ par : $\sigma(1) = \underbrace{11 \dots 1}_{2} 2$, $\sigma(2) = 13$, $\sigma(3) = 1$. Il est connu [7,4] que la frontière de \mathcal{E}_a

est constituée de 6 régions (Fig. 1(c)) : $Y = Y_0 = \mathcal{E}_a \cap (\mathcal{E}_a + 1 + \alpha)$, $Y_1 = \mathcal{E}_a \cap (\mathcal{E}_a + 1)$, $Y_2 = \mathcal{E}_a \cap (\mathcal{E}_a - \alpha)$, $Y_3 = \mathcal{E}_a \cap (\mathcal{E}_a - 1 - \alpha)$, $Y_4 = \mathcal{E}_a \cap (\mathcal{E}_a - 1)$ et $Y_5 = \mathcal{E}_a \cap (\mathcal{E}_a + \alpha)$. En particulier, nous avons

$$\mathcal{E}_a \cap (\mathcal{E}_a + p + q\alpha) \neq \emptyset \quad \Longleftrightarrow \quad p + q\alpha \in \{0, \pm 1, \pm \alpha, \pm (1 + \alpha)\} \quad \forall p, q \in \mathbb{Z}.$$
 (1)

1. Résultats

Comme $|\alpha| < 1$ et 0 est contenu dans l'intérieur de \mathcal{E}_a (voir [7]), tout nombre complexe et non nul z s'écrit en base α comme $z = \sum_{i=l}^{+\infty} \varepsilon_i \alpha^i$, où $l \in \mathbb{Z}$, $\varepsilon_l \neq 0$ et pour tout $N \geqslant 2$, $(\varepsilon_{i+l-2})_{2 \leqslant i \leqslant N} \in \mathcal{D}$. La suite $(\varepsilon_i)_{i \geqslant l}$ est appelée

 α -développement de z. Il est connu qu'un point de la frontière de \mathcal{E}_a possède au moins deux α -développements. Ces nombres complexes sont caractérisés dans le théorème suivant (voir [9]).

Théorème 1.1. Il existe un automate fini (graphe avec un nombre fini d'états) \mathcal{B} tel que pour tout $(x_i)_{i\geqslant l}$ et $(y_i)_{i\geqslant l}$ deux α -développements, nous avons $\sum_{i=l}^{\infty} x_i \alpha^i = \sum_{i=l}^{\infty} y_i \alpha^i$ si et seulement si la suite $((x_i, y_i))_{i\geqslant l}$ est un chemin infini de l'automate \mathcal{B} et commençant par l'état initial.

La méthode de Thurston ne donne pas explicitement les états de l'automate. Ici nous proposons de donner ces états.

Idée de la démonstration. Soient $z = \sum_{i=l}^{\infty} x_i \alpha^i$ et $w = \sum_{i=l}^{\infty} y_i \alpha^i$ où $l \in \mathbb{Z}$. Supposons que z = w. Quitte à multiplier par α^{-l} , nous pouvons supposer que l = 0. Posons pour tout $k \ge 0$, $A_k = \alpha^{-k+2} \sum_{i=0}^k (x_i - y_i) \alpha^i$. Donc $A_{k+1} = \frac{A_k}{\alpha} + (x_{k+1} - y_{k+1}) \alpha^2$. Supposons sans perte de généralité que $x_0 = y_0$ et que $x_1 > y_1$. D'où $A_0 = 0$. Soit $t = (z - y_0 - y_1 \alpha - y_2 \alpha^2)/\alpha$. Nous avons $t = x_1 - y_1 + (x_2 - y_2)\alpha + \sum_{i=3}^{+\infty} x_i \alpha^{i-1} = \sum_{i=3}^{+\infty} y_i \alpha^{i-1}$. Si $x_3 < a$ et $y_3 < a$, on a $t \in \mathcal{E}_a \cap (\mathcal{E}_a + x_1 - y_1 + (x_2 - y_2)\alpha)$. Donc, en vertu de la relation (1), $x_1 - y_1 = 1$ et $x_2 - y_2 = 0$ ou 1. Nous déduisons que $A_1 = \alpha^2$ et $A_2 = \alpha$ si $x_2 = y_2$ ou $A_2 = \alpha + \alpha^2$ si $x_2 = y_2 + 1$. En étudiant tous les cas et en continuant le même procédé, nous obtenons (voir [6]) que $A_k \in S = \{0, \pm \alpha, \pm \alpha^2, \pm (\alpha + \alpha^2), \pm (1 + (a-1)\alpha^2), \pm (1 + \alpha + (a-1)\alpha^2)\}$. Nous construisons un automate \mathcal{B} dont les états sont les éléments de S. Soient V et W deux éléments de S. Nous mettons une flèche étiquetée par $(x, y) \in \{0, 1, \ldots, a\}$ et allant de V à W si et seulement si $W = \frac{V}{\alpha} + (x - y)\alpha^2$. Nous prenons 0 pour état initial de l'automate \mathcal{B} . Comme l'ensemble S est fini, nous obtenons un automate fini (Fig. 1(a)). \square

2. Paramétrisation de la frontière de \mathcal{E}_a

L'automate \mathcal{B} décrit explicitement les 6 régions Y_i . Par exemple $z \in Y = \mathcal{E}_a \cap (\mathcal{E}_a + 1 + \alpha) \Leftrightarrow z = 1 + \alpha + (a-1)\alpha^2 + \alpha w_1 = k\alpha^3 + \alpha^2 w_1'$ où $k \in \{1, \ldots, a\}$ et $w_1, w_1' \in \mathcal{E}_a$. En utilisant l'automate \mathcal{B} nous construisons 5 fonctions F_i , $i = 1, \ldots, 5$, et 2a + 1 fonctions g_i , $i = 0, \ldots, 2a$ telles que

$$Y_i = F_i(Y) \quad \forall i = 1, ..., 5 \quad \text{et} \quad Y = \bigcup_{k=0}^{2a} g_k(Y).$$
 (2)

Ces fonctions sont définies par $F_1(z) = 1 + (a - 1)\alpha^2 + \alpha z$, $F_2(z) = -\alpha^2 + z/\alpha$, $F_3(z) = z - 1 - \alpha$, $F_4(z) = (a - 1)\alpha^2 + \alpha z$, $F_5(z) = -\alpha^2 + \alpha + z/\alpha$; et $g_0(z) = c_0 + \alpha^3 z$, $g_1(z) = c_1 + \alpha^4 z$, $g_{2k}(z) = c_{2k} + \alpha^3 z$, $\forall k = 1, 2, ..., a$ et $g_{2k+1}(z) = c_{2k+1} + \alpha^2 z$, $\forall k = 1, ..., a - 1$; où $c_0 = \alpha^3 + a\alpha^4$, $c_1 = 1 + \alpha + (a - 1)\alpha^2 + a\alpha^5$, $c_{2k} = k\alpha^3 + (a - 1)\alpha^4$, $c_{2k+1} = 1 + \alpha + (a - 1)\alpha^2 + (k - 1)\alpha^3$.

Lemme 2.1. Nous avons pour tout $i, j \in \{0, ..., 2a\}$, $g_i(Y) \cap g_j(Y) \neq \emptyset \Leftrightarrow 0 \leq |i-j| \leq 1$. En particulier $g_{2k}(Y) \cap g_{2k+1}(Y) = \{g_{2k}(y_0)\} = \{g_{2k+1}(y_0)\} \ \forall k = 0, ..., a-1$, et $g_{2k-1}(Y) \cap g_{2k}(Y) = \{g_{2k-1}(x_0)\} = \{g_{2k}(x_0)\} \ \forall k = 1, ..., a$, où $x_0 = -\alpha^2$ et $y_0 = \frac{a\alpha^3 + (a-1)\alpha^4}{1-\alpha^3}$.

Soit z un élément de Y. En vertu de la relation (2), il existe une suite $(a_i)_{i\geqslant 1}$ dans $\{0,1,\ldots,2a\}^{\mathbb{N}}$ telle que $z=\lim_{n\mapsto +\infty}g_{a_1}\circ g_{a_2}\cdots\circ g_{a_n}(y)$ où $y\in Y$ arbitraire. Soit $g:[0,1]\mapsto Y$ la correspondance définie de la façon suivante : si $t=\sum_{i=1}^{+\infty}a_i(2a+1)^{-i}$ où $(a_i)_{i\geqslant 1}\in\{0,1,\ldots,2a\}^{\mathbb{N}}$ alors $g(t)=\lim_{n\to +\infty}g_{b_1}\circ\cdots\circ g_{b_n}(x_0)$ où $b_1=a_1$ et pour tout $k\geqslant 2$, $b_k=a_k$ si $\sum_{i=1}^{k-1}a_i$ est pair et $2a-a_k$ sinon. L'idée de la construction de g repose sur le fait que si $\psi=g_{a_1}\circ g_{a_2}\cdots\circ g_{a_n}$ alors l'ensemble $\psi(Y)$ est l'union des ensembles $\psi\circ g_0(Y), \psi\circ g_1(Y),\ldots,\psi\circ g_{2a}(Y)$ (dans le sens trigonométrique) si $\sum_{i=1}^n a_i$ est pair, et $\psi\circ g_{2a}(Y), \psi\circ g_{2a-1}(Y),\ldots,\psi\circ g_0(Y)$ si $\sum_{i=1}^n a_i$ est

impair. Il est facile de voir que $g(t) = \sum_{n=1}^{+\infty} c_{b_n} \alpha^{k_n}$ où les nombres c_i sont donnés ci-dessus, $k_1 = 0$ et $k_n = p_n + 2(n-1+l_n)$ pour tout $n \ge 2$, où p_n (resp. l_n) est le nombre d'entiers pairs (resp. le nombre de 1) figurant dans le mot $b_1 \cdots b_{n-1}$. Il n'est pas difficile de voir que g est bien définie. En effet : soient $t, t' \in [0,1]$ tels que $t = \sum_{i=1}^{+\infty} a_i(2a+1)^{-i}$ et $t' = \sum_{i=1}^{+\infty} a_i'(2a+1)^{-i}$ où $(a_i)_{i\ge 1}, (a_i')_{i\ge 1} \in \{0,1,\ldots,2a\}^{\mathbb{N}}$. Si t=t' et $(a_i)_{i\ge 1}$ est lexicographiquement supérieure á $(a_i')_{i\ge 1}$ alors nous pouvons monter qu'il existe un entier k tel que $a_i = a_i'$ pour tout $1 \le i \le k$, $a_{k+1} = a_{k+1}' + 1$, $a_i = 0$ et $a_i' = 2a \forall i > k+1$. En utilisant la définition de g, nous vérifions facilement que g(t) = g(t').

En vertu de la relation (2) et du Lemme 2.1, nous pouvons aussi montrer (voir [6]) que g est une application bijective, continue et vérifie $g(0)=x_0$ et $g(1)=y_0$. En plus g est $\delta=\frac{-2\ln|\alpha|}{\ln(2a+1)}$ Hölder continue. Posons $F_0(z)=z$, $\forall z\in\mathbb{C}$. En utilisant les fonctions g et F_i , $i=0,1,\ldots,5$, nous définissons une application continue et bijective de [0,1] dans Y_i par : $h_i(t)=F_i\circ g(t)$ si i est pair, et $h_i(t)=F_i\circ g(1-t)$ si i est impair. En fait, Y_i est l'arc d'extrémités $F_i(x_0)$ et $F_i(y_0)$ (dans le sens trigonométrique) si i est pair, et $F_i(y_0)$ et $F_i(x_0)$ si i est impair. Maintenant, considérons la correspondance $f:[0,1]\mapsto Fr(\mathcal{E}_a)$ définie par : si $t=\sum_{i=1}^{+\infty}a_i\delta^{-i}$ où $a_i\in\{0,1,\ldots,5\}$ alors $f(t)=F_{a_1}\circ g(6t-a_1)$ si a_1 est pair, et $F_{a_1}\circ g(1+a_1-6t)$ si a_1 est impair.

Théorème 2.2. La correspondance f est une application bijective est continue sur]0, 1[. En plus f(0) = f(1) et f est $\delta = \frac{-2 \ln |\alpha|}{\ln(2\alpha+1)}$ Hölder continue.

3. La frontière de \mathcal{E}_a est un quasi-cercle

Nous pouvons montrer, en utilisant l'auto-similarité de Y_0 qu'il existe un réel k > 0, tels que si $0 \le t_0 \le t_1 \le t_2 \le 1$ alors $|g(t_1) - g(t_0)| \le k|g(t_2) - g(t_0)|$. En vertu de l'auto-similarité de $Fr(\mathcal{E}_a)$ et du Lemme 2.1, nous pouvons montrer (voir [6]) que pour tout $x, y \in Fr(\mathcal{E}_a)$, min(diam(I(x, y)), diam(I(y, x)) $\le k|x - y|$, où pour tout $z, w \in Fr(\mathcal{E}_a)$, I(z, w) est l'arc de $Fr(\mathcal{E}_a)$ d'origine z et d'extrémité w dans le sens trigonométrique, et diam(I(z, w)) est le diamétre de I(z, w). D'où $Fr(\mathcal{E}_a)$ vérifie les conditions d'Ahlfors. Par conséquent, $Fr(\mathcal{E}_a)$ est un quasi-cercle.

Remarque 1. Le cas a=1 a été étudié dans [5], et la même approche a été utilisée dans [3] pour étudier la frontière du fractal du Dragon. Pour l'étude de certaines propriétés topologiques d'ensembles fractals donnés par un système de numération, voir aussi [1].

Remerciements

Je tiens à remercier le referee pour ses suggestions importantes.

Références

- [1] S. Akiyama, J. Thuswaldner, A survey on topological properties of tiles related to number systems, Geom. Dedicata 109 (2004) 89–105.
- [2] P. Arnoux, S. Ito, Pisot substitutions and Rauzy fractals, Bul. Belg. Math. Soc. Simon Stevin 8 (2001) 181–207.
- [3] A. Benedek, R. Panzone, The set of Gaussian fractions, in: Proc. Second Conf. Math. "Dr. Antonio A.R. Monteiro" (Bahia Blanca), 1993, 11–40.
- [4] S. Ito, M. Kimura, On the Rauzy Fractal, Japan J. Indust. Appl. Math. 8 (1991) 461-486.
- [5] A. Messaoudi, Frontière du fractal de Rauzy et systèmes de numération complexe, Acta Arith. XCV (3) (2000) 195-224.
- [6] A. Messaoudi, Propriétés arithmétiques et topologiques d'une classe d'ensembles fractals, Preprint numéro 7, Institut de Mathématiques de Luminy, Marseille, 2005.
- [7] G. Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France 110 (1982) 147-178.
- [8] A. Siegel, Pure discrete spectrum dynamical systems and periodic tiling associated with a substitution, Ann. Inst. Fourier 2 (54) (2004) 288–299.
- [9] W.P. Thurston, Groups, Tilings, and Finite State Automata, Amer. Math. Soc. Colloq. Lectures, Amer. Math. Soc., 1990.