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Abstract

In the context of the Burgers equation with distributed controls, we present optimal estimates for the minimal time of con-
trollability T (r) of the initial data of norm< r in L2. To citethisarticle: E. FernandezCara, S. Guerrero, C. R. Acad. Sci.
Paris, Ser. | 341 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé
Remarques sur la contrdlabilité exacte a zéro de I’ équation de Burgers. Dans le contexte de I'équation de Burgers avec
contrbles distribués, on présente une estimation optimale du temps minimal de contrélabilides données initiales de

norme< r dansL?2. Pour citer cet article: E. Fernandez-Cara, S. Guerrero, C. R. Acad. Sci. Paris, Ser. | 341 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction and main results

Let T > 0 be an arbitrary positive time and let us assumedhat(0, 1) is a nonempty open set, withdlw. In
this Note, we will be concerned with the null controllability of the following system for the Burgers equation:

YI_YXx+yyx:U1ws (.x,t)e(o, 1) X (Ov T),
y0,6)=y(1,t)=0, +e(0,7), Q)
y(x,0) = y0(x), xe01).

Here,v = v(x, t) denotes the control ang= y(x, t) denotes the state. It will be said that (1nid| controllable
attime T if, for every y0 € L2(0, 1), there existe € L2((0, 1) x (0, T)) such that

y(x,T)=0 in(0,1). 2
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Some controllability properties of (1) have been studied in [2] (see Chapter 1, Theorems 6.3 and 6.4). There, it
is shown that one cannot reach (even approximately) stationary solutions of (1) witifargem at any time7".
In other words, with the help of one control, the solutions of the Burgers equation cannot go anywhere at any time.
For eachy® € L2(0, 1), let us introduce’ (y°%) = inf{T > 0: (1) is null controllable at tim&’}. Then, for each
r > 0, we define the quantity* () = sup(T (y°): ||y0||L2(0’1) < r}. Our main purpose in this Note is to prove that
T*(r) > 0 with an explicit sharp estimate in termsrmfwhich in particular implies that (global) null controllability
at any positive time does not hold for (1).
More precisely, let us set(r) = (log %)‘1. We have the following:

Theorem 1.1. There exist positive constants Co and C1 independent of r such that

Cop(r) <T*(r) < C1¢(r) asr—0. 3)

Remark 1. The same estimates hold when the contraicts on system (1) through the boundanyy atx = 1
(or only atx = 0). When (1) is controlled at both points= 0 andx = 1, it is unknown whether we still have an
estimate from below fof ().

The main ideas of the proof of Theorem 1.1 will be presented in the following section. More details will be
given in a forthcoming paper.

2. Sketch of the proof of Theorem 1.1

The proof of the estimate from above in (3) can be obtained by solving (1), (2) with a (more or less) standard
fixed point argument, using global Carleman inequalities to estimate the control and energy inequalities to estimate
the state and being very careful with the rolefoin these inequalities.

We will concentrate in the proof of the other estimate, that has been inspired by the arguments in [1].

We will prove that there exist positive constaxls and C|j such that, for any sufficiently small> 0, we can
find initial datay® satisfying||y°||L2(o’1) < r with the following property: for any state associated tg°, one has

|y(x,)| > Cyr  for somex € (0, 1) and anyr: 0 <t < Cog (r).

Let us setl’ = ¢ (r) and letpg € (0, 1) be such that0, pg) N w = @. We can suppose thatOr < pg. Let us
choosey® € L?(0, 1) such thaty%(x) = —r for all x € (0, pp) and let us denote by an associated solution of (1).
Let us introduce the functiod = Z(x, t), with

2 1
Z(x,1) = exp{ - (1— e b=/ (po/2-0)%) | % } 4)

Thenoneha¥, — Z,, + ZZ, > 0.
Let us now setw(x,t) = Z(x,t) — y(x, t). Itis immediate that
wt_wxx+ZZx_yyx>O, (xsl)e(OaPO)X(os T)v
w(0,1) >0, w(po,t) =+o0, t€(0,7T), (5)
w(x,0) =r, x € (0, po)
and, consequently~ (x, ) = 0. Indeed, let us multiply the differential equation in (5)-bw~ and let us integrate
in (0, po). Sincew™ vanishes at = 0 andx = pg, after some manipulation we find that

£0

1d » o £0
EE/'w_|2dx+/|wx_|2dx=fw_(zzx—ny)dxéCf|w‘|2dx. ©)
0 0 0 o
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Hence,
y<Z in(0, p0) x(0,T). )
Let us seto1 = po/2 and let us introduce the solutiarof the auxiliary system
Ur — Uyy +uuy =0, (x,1) € (0, p1) x (0,7),
u@©,1) =Z(p1. 1), ulp1,t)=2Z(p1,1), t€(0,T), (8)
u(x,0) =—r(x), x €(0, p1),

wherer is any regular function satisfying the following(0) = 7(p1) = 0; 7 (x) = r for all x € (§p1, (1 — 8)p1)
and somé € (0,1/4); —r < —F(x) <0;

[7x| < Cr and [Fex| < C in (O, 01), (9)

where C = C(p1) is independent of. Taking into account (7) and that,,y € L°°((0, p1) x (0,T)) (see
Lemma 2.1 below), a standard application of Gronwall's lemma shows that

y<u in(0,p1) x (0, 7). (10)

We will prove that, for some appropriate choices@ and C(, u(p1/2,t) remains below—C(r for any time
t < Co¢ (r). This, together with (10), will prove Theorem 1.1.
We will need the following lemma:

Lemma2.1. One has

lul <Cr and Jue| < Cr? in(0, p1) x (0, ¢(r)), (11)
where C isindependent of r.

A consequence of (11) is thaf — u., < C*r3/2in (0, p1) x (0, ¢(r)) for someC* > 0. Let us consider the
functionsp andg, given byp(t) = C*r¥2t — r andq (x, t) = c(e~*—(P1/A?/4 4 g=(=3(01/4)%/41) It is then clear
thatb = u — p — g satisfies

bt_bxx<09 (xat)e(lol/4’3101/4)x(Ov(p(r))’
b(p1/4,1) < Z(p1,1) — C*r¥21 +r —c(L4+ e 71/A®) 1€ (0,4(r),

b(3p1/4,1) < Z(p1,1) — C*r¥2t +r —c(1+ e—Pf/<16'>), t € (0,¢(r)),

b(x,0) =0, x € (p1/4,3p1/%).

Obviously, in the definition of;, the constant can be chosen large enough to hag1, 1) — C*r®/%t +r —
c(1+ e P1/(18)) — 0 for anyt e (0, ¢(r)). If this is the case, we get< p + ¢ and, in particular,

(12)

w(pr/2.1) < (p+q)(p1/2. 1) = 20 € P/ ®%) 4 c*p3/24

Therefore, we see that there exig andC, such that(p1/2, 1) < —Cgr for anyr € (0, Cop (r)).
This proves (3) and, consequently, ends the proof of Theorem 1.1.

Proof of Lemma 2.1. The first estimate in (11) can be obtained in a classical way, using arguments based on
the maximum principle for the heat equation and the facts #@t, 1) < Cr2 and Z;(p1, 1) < Crl¢(r)~2 for

t € (0, ¢ (r)). Let us explain how the second estimate in (11) can be deduced. Thus, letas,s¢t= u(x, ) —
Z(p1,t). This function satisfies

iy —fx + (@ + Z(p1, )ity = —=Z(p1, 1), (x,1) € (0, p1) x (0,9 (r)),
i(0,1)=0, d(p1,1) =0, re(0.6(r)), (13)
ﬁ(xvo)z_;:(x)’ XE(O, ,01)
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e In a classical way, we can deduce energy estimates.for

p1é(r)
~n2 ~ 12 ~12 2
”u”LOO(O,T;LZ(O,,Ol)) + ”uX ||L2((0,,01)><(0,T)) < C”r”LZ(O,pl) + CV/ / |Zt (1017 t)| dt d)C g Cr . (14)
00

From the definition ofz, a similar estimate holds for. Multiplying the equation satisfied by by i,, we also get
i; € L3((0, p1) x (0, T)), itx € C(I0, T]; L*(0, p1)) and
~ 02 ~ 02
Nt W20, py 0,1y F 1 W00 0,7 120, 1))
~ ~ 12 2 ~ 12 2
< C(” (M + Z(,O]_, l))ux HLZ((O,p]_)X(O,T)) + || Zl (1017 ) ||L2(O,¢(r)) + ”rx ||L2(0,p1)) < CV . (15)

Here, we have used (9), the first estimate in (11) and (14). Obviously, this also holds for the narmiof
L?((0, p1) x (0, T)). Again, these estimates are satisfied:by

e Next, multiplying the equation satisfied byby —i,,, and integrating in(0, p1), we havefo‘”L liisx |2 dx +

%% Tt ixl?dx = [§ e @ + Z(p1, 1))y Ox + 3 dirxx Zi (p1. 1) dx. Integrating in(0, 1), we obtain the
following after several integration by parts:

t p1 PL P1
/f|atx|2dxds+ </|ﬂxx|2dx>(r><c<(/(|a+2(m, r>|2|ﬁx|2)dx>(t>
00

0 0
p1 £1 t p1

+ [t [Pt [ [ lla+ 2o drds +12
0 0 00

pL

t
+ /(|ﬁ,|2+!Zt(pl,s>|2)|ﬁx|2dxds+|zt<p1,r)|2+f|zn(p1,s>|2ds>.
0 0

o

Using again the first estimate in (11) and (15), we deduce that
”’ZI)C ”%2((0”01”«0’7‘)) + ”ﬂxx ”im(O,T;LZ(O,pl)) < C(V4 + r2 + 1 + V4¢ (r)74 + r4¢(r)78)' (16)
As a consequence, (16) implies that

~ 2 ~ 2
”utx ||L2((0,p1)><(0,T)) + ”uxx ”LOO(O,T;LZ(O,pl)) < C (17)
e Finally, in order to estimaté, in L°°((0, p1) x (0, T)), we observe that for eache (0, T) there exists

a(t) € (0, p1) such thati, (a(t), ) = 0. Using this fact, we obtairii, (x, t)|2 = %f{fm (&, Diley (&, 1) 0E.

Applying the estimates (15) and (17)d@ € L>°(0, T; L%(0, p1)) andii,, € L°(0, T; L?(0, p1)) respectively, we
readily deduce thamx||§m((0’pl)x(o’r)) < Cr which, in particular, implies the second estimate in (11).
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