

C. R. Acad. Sci. Paris, Ser. I 340 (2005) 921-926

http://france.elsevier.com/direct/CRASS1/

Analyse numérique

Schéma volumes finis pour des opérateurs de diffusion fortement anisotropes sur des maillages non structurés

Christophe Le Potier

Commissariat à l'énergie atomique, DEN/DM2S/SFME/MTMS, 91191 Gif-sur-Yvette cedex, France Reçu le 26 octobre 2004; accepté après révision le 19 mai 2005

Présenté par Philippe G. Ciarlet

Résumé

Nous décrivons une méthode de volumes finis pour des opérateurs de diffusion fortement anisotropes sur des maillages déformés. L'idée principale est de calculer le gradient sur chaque noeud de chaque maille à l'aide de l'inconnue principale au centre des mailles et d'inconnues auxiliaires définies sur les arêtes du maillage. Ces dernières sont éliminées en imposant des relations de continuité des flux. La matrice globale associée à ce schéma est symétrique définie positive. Nous montrons la robustesse et la précision de la méthode par comparaison à des solutions analytiques et aux résultats obtenus par d'autres schémas numériques. *Pour citer cet article : C. Le Potier, C. R. Acad. Sci. Paris, Ser. I 340 (2005).*© 2005 Académie des sciences. Publié par Elsevier SAS. Tous droits réservés.

Abstract

Finite volume scheme for highly anisotropic diffusion operators on unstructured meshes. We introduce a finite volume method for highly anisotropic diffusion operators on unstructured meshes. The main idea is to calculate the gradient on each cell vertex using the cell-centered unknown and other unknowns calculated on the cell edges. These degrees of freedom are eliminated imposing flux continuity conditions. The resulting global matrix is symmetric and positive definite. We show the robustness and the precision of the method in comparison with analytical solutions and results obtained by other numerical schemes. *To cite this article: C. Le Potier, C. R. Acad. Sci. Paris, Ser. I 340 (2005)*.

© 2005 Académie des sciences. Publié par Elsevier SAS. Tous droits réservés.

Abridged English version

In the framework of nuclear waste disposal simulation, we are interested in a transport model in porous media which can be described by a convection–diffusion equation. Recently, a cell-centered finite volume scheme has been proposed to discretize the diffusion operator [1,4]. We have shown the robustness and the precision of the

Adresse e-mail: clepotier@cea.fr (C. Le Potier).

algorithm on realistic cases, such as safety calculations [4]. However, as is described in [1], the discretization of the diffusive terms, with highly anisotropic diffusion or with skewed meshes, can lead to numerical instabilities. We propose a new algorithm, stable for any anisotropic tensors.

We consider the problem (1), with ω , the porosity, C, the radioactive element concentration, and $\overline{\overline{D}}$, a symmetric definite positive matrix. For sake of simplicity, we use a grid of Ω constituted of quadrangular cells. However, the formulation can easily be generalized to triangular cells. We use the following notations (Fig. 1):

- Ω_k the quadrangular cell (A_1, A_2, A_3, A_4) , SF_A the area of Ω_k , A the barycenter of Ω_k , M_{i+1} the middle of the edge $A_i A_{i+1}$ (by convention $A_5 = A_1$, $M_5 = M_1$), D_i and E_i the middles of the edges $A_i M_i$ and $A_i M_{i+1}$.
- n_{D_i} and n_{E_i} the normal vectors to the edges $A_i M_i$ and $A_i M_{i+1}$ with the same length as these edges.
- Δ_{A_i} the quadrangular cell (A, M_i, A_i, M_{i+1}) , SF_i its area and $\partial \Delta_{A_i}$ its boundary.
- F_{A_i} and N_{A_i} , the set and the number of edges around the point A_i in the grid of Ω .
- N_{ma} , the number of cells in the grid of Ω .

Assumptions of the finite volume discretization:

- the concentration C is constant inside Ω_k , the vector \boldsymbol{q} is constant on Δ_{A_i} .
- The matrix $\overline{\overline{D}}$ is constant on Ω_k , the concentration C is constant on the edges $A_i M_i$ and $A_i M_{i+1}$.

We denote C_A (respectively C_{D_i} and C_{E_i}) the values of the concentration C at the point A (respectively on the edges $A_i M_i$ and $A_i M_{i+1}$), \boldsymbol{q}_{A_i} the value of \boldsymbol{q} on Δ_{A_i} , $\overline{\overline{D}}_A$ the value of the matrix $\overline{\overline{D}}$ at the point A. Integration of the first equation of the system (1) over Δ_{A_i} , using Green's formula leads to Eqs. (2) and (3). Applying the flux continuity conditions on F_{A_i} , we deduce the interface values (C_{E_i} , C_{D_i} , etc.) as a function of the main unknowns, inversing a small matrix M_{A_i} of dimension N_{A_i} . Then, we reconstruct all the fluxes around the point A_i . Integrating the mass conservation equation (the second equation of the system (1)) over a cell Ω_k , we obtain the scheme (4).

The main result is that thus obtained global matrix is symmetric and positive definite. Therefore, the finite volume scheme which is described above, is stable for any anisotropic tensor and any skewed mesh (Proposition 3.1). We also show, that for triangular cells or for parallelograms, with angles between ϵ and $\pi - \epsilon$ ($\epsilon > 0$), the flux approximation is consistent (Proposition 3.2).

In order to evaluate the precision of the scheme, we consider an elliptic problem (Eqs. (5) and (6)). The ϵ parameter is equal to 10^{-1} (problem 1), 10^{-2} (problem 2) or 10^{-4} (problem 3). The anisotropy ratio for these 3 problems changes from 10 to 10^4 . The analytical solution can be written: $C = \sin(\pi x)\sin(\pi y)$. We consider a grid constituted of about 35 000 unstructured triangular cells. We show in Table 1 the L^2 errors for C and $\overline{D}\nabla C$ with respect to the analytical solution for M.H.F.E. (Mixed hybrid finite elements) [2,3], for the MPFA method [1,4] and for the new scheme presented previously (VFNEW). We note that the VFNEW scheme is quite accurate. The M.H.F.E scheme becomes inaccurate for problems 2 and 3. The VF(MPFA) method becomes divergent for problems 2 and 3, as it is already mentioned in [1].

In the last part, we show that this algorithm can be generalized in 3 dimensions with tetrahedral cells or with parallelepipeds.

1. Introduction

Dans le cadre des études concernant le stockage des déchets nucléaires en formation géologique profonde, nous nous intéressons à un modèle de type transport qui s'écrit à l'aide d'une équation de convection—diffusion-dispersion avec un terme de décroissance radioactive et qui permet d'étudier la migration d'un radionucléide. Un schéma volumes finis centré sur les mailles a été récemment développé pour approcher le terme diffusif. Nous

avons montré la robustesse et la précision de l'algorithme sur des calculs réalistes de sûreté [4]. Cependant, comme cela est décrit dans [1], cette approche peut devenir instable avec des maillages très déformés ou des tenseurs fortement anisotropes. Nous proposons donc de mettre en œuvre un nouvel algorithme de volumes finis sur un maillage non structuré, stable pour tout tenseur symétrique défini positif.

2. Formulation volumes finis en 2 dimensions

Nous considérons un domaine polygonal Ω de frontière Γ . Nous simplifions le modèle de transport en supprimant la convection et la décroissance radioactive. Il s'écrit :

$$\begin{cases}
\mathbf{q} = \overline{\overline{D}} \nabla C, \\
\omega \frac{\partial C}{\partial t} = \operatorname{div} \mathbf{q} \quad \operatorname{sur} \Omega \ \forall t > 0
\end{cases} \tag{1}$$

avec : ω , la porosité, C, la concentration de radionucléide, $\overline{\overline{D}}$, une matrice (2,2) symétrique définie positive. Nous imposons d'autre part une condition initiale et des conditions aux limites du type Dirichlet ou Neumann sur la frontière du domaine étudié. Nous considérons un maillage de Ω constitué de triangles ou de quadrangles. Nous notons (Fig. 1) pour un maillage de quadrangles :

- Ω_k le quadrangle (A_1, A_2, A_3, A_4) , SF_A sa surface, A son barycentre, M_1, M_2, M_3, M_4 les milieux des arêtes du quadrangle Ω_k , D_i et E_i les milieux des arêtes du type A_iM_i et A_iM_{i+1} (par convention $M_5 = M_1$).
- n_{D_i} et n_{E_i} les vecteurs orthogonaux aux arêtes $A_i M_i$ et $A_i M_{i+1}$ (et de même longueur).
- Δ_{A_i} le quadrangle associé à A_i du type (A, M_i, A_i, M_{i+1}) de surface SF_i et $\partial \Delta_{A_i}$ sa frontière.
- F_{A_i} et N_{A_i} , l'ensemble et le nombre d'arêtes autour du point A_i dans le maillage de Ω .
- N_{ma} le nombre de mailles de Ω .

Hypothèses de calcul.

- La concentration C est constante à l'intérieur du quadrangle Ω_k , le vecteur q est constant sur Δ_{A_i} .
- La matrice $\overline{\overline{D}}$ est constante sur Ω_k , la concentration C est constante sur les arêtes $A_i M_i$ et $A_i M_{i+1}$.

Nous notons C_A (respectivement C_{E_i} et C_{D_i}) les valeurs de la concentration C au point A (respectivement sur les segments A_iM_i et A_iM_{i+1}), \boldsymbol{q}_{A_i} la valeur de \boldsymbol{q} sur Δ_{A_i} et $\overline{\overline{D}}_A$ la valeur de la matrice $\overline{\overline{D}}$ au point A.

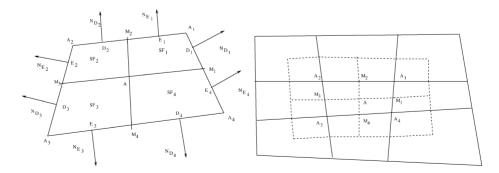


Fig. 1. Maillages de quadrangles.

Fig. 1. Mesh of quadrangular cells.

Intégrons la première équation du système (1) sur Δ_{A_i} en utilisant la formule de Green. Nous pouvons écrire : $\int_{\Delta_{A_i}} \overline{\overline{D}}_A^{-1} \boldsymbol{q} \, \mathrm{d}\Omega = \int_{\Delta_{A_i}} \nabla C \, \mathrm{d}\Omega = \int_{\partial \Delta_{A_i}} C \boldsymbol{n} \, \mathrm{d}\Gamma.$ En utilisant les hypothèses sur C, nous obtenons :

$$\overline{\overline{D}}_{A}^{-1} \boldsymbol{q}_{A_{i}} = \frac{1}{SF_{i}} (C_{D_{i}} - C_{A}) \boldsymbol{n}_{D_{i}} + \frac{1}{SF_{i}} (C_{E_{i}} - C_{A}) \boldsymbol{n}_{E_{i}}.$$
(2)

Nous déduisons donc les flux f_{D_i} et f_{E_i} à travers les interfaces A_iM_i et A_iM_{i+1} qui vérifient :

$$\begin{cases}
f_{D_i} = \mathbf{q}_{A_i} \cdot \mathbf{n}_{D_i} = \mathbf{n}_{D_i} \cdot \overline{\overline{D}} \mathbf{n}_{D_i} \frac{1}{SF_i} (C_{D_i} - C_A) + \mathbf{n}_{D_i} \cdot \overline{\overline{D}} \mathbf{n}_{E_i} \frac{1}{SF_i} (C_{E_i} - C_A), \\
f_{E_i} = \mathbf{q}_{A_i} \cdot \mathbf{n}_{E_i} = \mathbf{n}_{E_i} \cdot \overline{\overline{D}} \mathbf{n}_{D_i} \frac{1}{SF_i} (C_{D_i} - C_A) + \mathbf{n}_{E_i} \cdot \overline{\overline{D}} \mathbf{n}_{E_i} \frac{1}{SF_i} (C_{E_i} - C_A).
\end{cases}$$
(3)

En appliquant la condition de continuité du flux sur F_{A_i} , nous déduisons les valeurs aux interfaces (C_{E_i} , C_{D_i} , etc.), en inversant une petite matrice M_{A_i} de dimension N_{A_i} . Nous reconstruisons alors tous les flux autour du point A_i . En intégrant la seconde équation du système (1) sur la maille Ω_k , nous obtenons :

$$\int_{\Omega_k} \omega \frac{\partial C}{\partial t} d\Omega = SF_A \omega \frac{\partial C_A}{\partial t} = \int_{\Omega_k} \operatorname{div} \boldsymbol{q} d\Omega = \int_{\partial \Omega_k} \boldsymbol{q} \cdot \boldsymbol{n} d\Gamma = \sum_{1 \leqslant i \leqslant 4} f_{D_i} + f_{E_i}. \tag{4}$$

Remarque 1. Dans [5], nous montrons que les conditions aux limites sont naturellement prises en compte.

3. Propriétés de l'algorithme

Pour chaque noeud de chaque maille, nous définissons la matrice MAT_i comme suit :

$$MAT_{i} = \begin{pmatrix} \boldsymbol{n}_{D_{i}} \cdot \overline{\overline{D}} \boldsymbol{n}_{D_{i}} & \boldsymbol{n}_{D_{i}} \cdot \overline{\overline{D}} \boldsymbol{n}_{E_{i}} \\ \boldsymbol{n}_{E_{i}} \cdot \overline{\overline{D}} \boldsymbol{n}_{D_{i}} & \boldsymbol{n}_{E_{i}} \cdot \overline{\overline{D}} \boldsymbol{n}_{E_{i}} \end{pmatrix}.$$

Nous notons également A la matrice de la discrétisation de div $\overline{D}\nabla$ de dimension N_{ma} , SF la matrice diagonale dont les coefficients sont les surfaces du maillage, Δt le pas de temps, $C^n = C(n\Delta t)$ le vecteur concentration de dimension N_{ma} . Nous choisissons un schéma temporel implicite. La discrétisation de l'Éq. (4) devient : $(\frac{SF\omega}{\Delta t} - A)C^{n+1} = \frac{SF\omega}{\Delta t}C^n$ et nous posons $MTOT = \frac{SF\omega}{\Delta t} - A$.

Proposition 3.1. La matrice globale MTOT associée au schéma précédent est symétrique définie positive. Ce dernier est donc inconditionnellement stable.

On peut se référer à [5] pour les détails de la preuve. Il est clair que la matrice MAT_i est symétrique positive. D'autre part, le schéma s'écrit dans un formalisme matriciel très proche de celui des élements finis mixtes hybrides (E.F.M.H) [2]. On montre alors que la matrice -A a les même propriétés que la matrice MAT_i . Par suite, la matrice MTOT est symétrique définie positive.

Proposition 3.2. Avec des triangles ou des parallélogrammes non aplatis, si $\overline{\overline{D}}$ est constant et $C \in C^2(\Omega)$, les flux sont approchés de manière consistante.

Dans [5], nous montrons analytiquement que si *C* est affine, la discrétisation est exacte. Donc si *C* est deux fois dérivable, la discrétisation des flux est consistante.

Remarque 2. Pour des quadrangles quelconques non aplatis, on observe, sur des expériences numériques, que les flux sont consistants.

Tableau 1 Erreurs L^2 pour les 3 problèmes et les 3 discrétisations pour C (à gauche) et $\overline{\overline{D}}\nabla C$ (à droite)

Table 1 L^2 errors for the 3 problems and the 3 discretizations for C (left) and $\overline{\overline{D}}\nabla C$ (right)

	EFMH	VF (MPFA)	VFNEW		EFMH	VF (MPFA)	VFNEW
Problème 1	$5,8 \times 10^{-5}$	5×10^{-5}	$3,8 \times 10^{-5}$	Problème 1	$1,2 \times 10^{-3}$	$1,2 \times 10^{-3}$	$1,5 \times 10^{-3}$
Problème 2	$7,6 \times 10^{-4}$	non convergence	$8,1 \times 10^{-5}$	Problème 2	$1,2 \times 10^{-3}$	non convergence	$1,2 \times 10^{-3}$
Problème 3	$8,2 \times 10^{-2}$	non convergence	$3,1 \times 10^{-3}$	Problème 3	$3,5 \times 10^{-3}$	non convergence	$1,2 \times 10^{-3}$

4. Résultats numériques

Nous cherchons à retrouver numériquement la solution analytique du problème suivant :

$$\begin{cases} \operatorname{div}(\overline{\overline{D}}\nabla C) = S & \operatorname{sur} \Omega =]0, 0.5[\times]0, 0.5[, \\ C = \sin(\pi x)\sin(\pi y) & \operatorname{pour}(x, y) \in \partial \Omega \end{cases} \quad \text{avec } \overline{\overline{D}} = \begin{pmatrix} y^2 + \epsilon x^2 & -(1 - \epsilon)xy \\ -(1 - \epsilon)xy & x^2 + \epsilon y2 \end{pmatrix}$$
 (5)

et

$$\begin{cases} S = -\sin(\pi x)\sin(\pi y)((1+\epsilon)\pi^{2}(x^{2}+y^{2})) - \cos(\pi x)\sin(\pi y)((1-3\epsilon)\pi x) \\ -\sin(\pi x)\cos(\pi y)((1-3\epsilon)\pi y) - \cos(\pi x)\cos(\pi y)(2\pi^{2}(1-\epsilon)xy). \end{cases}$$
(6)

Le paramètre ϵ est égal à 10^{-1} (problème 1), 10^{-2} (problème 2) ou 10^{-4} (problème 3). Le rapport d'anisotropie pour ces 3 problèmes varie alors de 10 à 10^4 . La solution analytique de ces problèmes s'écrit : $C = \sin(\pi x)\sin(\pi y)$. Nous considérons un maillage constitué d'environ 35000 triangles non structurés. Nous calculons dans le Tableau 1 les erreurs L^2 de C et de $\overline{D}\nabla C$ par rapport à la solution analytique pour les E.F.M.H. [3], pour la méthode VF(MPFA) [1,4], et pour le schéma présenté dans les paragraphes précédents (VFNEW). Nous constatons clairement la bonne précision de ce dernier. Le schéma E.F.M.H est imprécis pour les problèmes 2 et 3. La méthode VF(MPFA) devient divergeante, ce qui confirme les réserves décrites dans [1]. Comme S est négatif, le schéma respecte le principe du maximum si et seulement si la solution calculée est positive. Pour le problème 1, la propriété est vérifiée avec les schémas VF(MPFA) et VFNEW mais ce n'est plus le cas avec les E.F.M.H. Pour les autres problèmes, aucun des trois algorithmes ne satisfait ce principe.

Généralisation en 3 dimensions pour un maillage de tétraèdres ou de parallélépipèdes. Nous considérons un tétraèdre ou un parallélépipède Ω_k de barycentre A et nous calculons le gradient q sur chaque noeud A_i de Ω_k par intégration sur un tétraèdre T_i du type $(M_i, A_i, M_{i+1}, M_{i+2})$, où les points M_i sont les milieux des arêtes de Ω_k s'appuyant sur A_i . D'autre part, SV_i désigne le volume de T_i et D_i , n_{D_i} , E_i , n_{E_i} , F_i , n_{F_i} sont les barycentres et les vecteurs surface des triangles s'appuyant sur A_i . Nous obtenons :

$$\overline{\overline{D}}_{A}^{-1} \boldsymbol{q}_{A_{i}} = \frac{1}{SV_{i}} (C_{D_{i}} - \alpha C_{A}) \boldsymbol{n}_{D_{i}} + \frac{1}{SV_{i}} (C_{E_{i}} - \alpha C_{A}) \boldsymbol{n}_{E_{i}} + \frac{1}{SV_{i}} (C_{F_{i}} - \alpha C_{A}) \boldsymbol{n}_{F_{i}}$$
(7)

avec $\alpha = \frac{2}{3}$ pour un tétraèdre ou $\alpha = \frac{1}{3}$ pour un parallélépipède. On montre analytiquement que la discrétisation des flux est consistante pour des mailles non aplaties. Le formalisme matriciel étant similaire, la Proposition 3.1 est également vérifiée.

Références

- [1] I. Aavatsmark, T. Barkve, O. Boe, T. Mannseth, Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods, SIAM J. Sci. Comput. 19 (5) (1998) 1700–1716.
- [2] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Methods, Springer-Verlag, New York, 1991.

- [3] F. Dabbène, Mixed hybrid finite elements for transport of pollutants by undergrounds water, in: Proceeding of the 10th International Conference on Finite Elements in Fluids, Tucson, AZ, USA, 1998.
- [4] C. Le Potier, Finite volume in 2 or 3 dimensions for a diffusion convection equation applied to porous media with Cast3m, in: Proceedings of the XVth International Conference on Computational methods in Water Resources 2004, vol. 2, Elsevier, pp. 1015–1026.
- [5] C. Le Potier, A finite volume method for the approximation of highly anisotropic diffusion operators on unstructured meshes, accepté dans "Finite Volumes for Complex Application IV, 2005".