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Abstract

In this Note, we study the unfolding of a vector field that possesses a degenerate homoclinic (of inclination-flip type) to

a hyperbolic equilibrium point where its linear part possesses a resonance. For the unperturbed system, the resonant terrr
associated with the resonance vanishes. After suitable rescaling, the Poincaré return map is a cubic Hénon-like map. We deduc
the existence of a strange attractor which persists in the Lebesgue measure sense. We also show the presence of an attract

with topological entropy close to log 3o citethisarticle: M. Martenset al., C. R. Acad. Sci. Paris, Ser. | 340 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé
Une application de type Hénon cubique dans le déploiement d’ une or bite homocline dégénér ée avec r ésonance. Nous
étudions le déploiement d’'un champ de vecteurssuqui posséde une orbite homocline dégénérée associée & une singularité

hyperbolique. La partie linéaire du champ en cette singulartité possseéde une résonance mais, pour le systéme initial, le terme
résonant associé a cette résonance disparait. Nous montrons qu’aprés changement d’échelle, I'application de retour de Poinca

sur une section transverse est proche d’ une application de Hénon cubique. Un attracteur étrange est présent et persiste au se

de la mesure de Lebesgue. Nous montrons également la présence d’'un attracteur avec une entropie topologique proche de log:

Pour citer cet article: M. Martenset al., C. R. Acad. Sci. Paris, Ser. | 340 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

E-mail addresseamarco@math.rug.nl (M. Martens), v.naudot@mathmu/. Naudot), jyang@math.pku.edu.cn (J. Yang).
1 J. Yang is supported by NSFC-10271006.

1631-073X/$ — see front mattdrl 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2005.04.001



844 M. Martens et al. / C. R. Acad. Sci. Paris, Ser. | 340 (2005) 843—-846

1. Introduction

In dynamical systems, from the bifurcation theoretical point of view, homoclinic orbits play an important role.
To understand the dynamics that appear after perturbation of such a system, many studies have been done firs
in the codimension one case [21], but also in the codimension two case [3,4,6,11,18,20] and latter [13,12] in
the codimension three case. To really understand the bifurcations around this homoclinic orbit we need more
specific information about this orbit. This information can be topological but also analytical and implies in general
geometrical considerations [3,4,10,11,14,19]. For instance Homburg et al. study the bifurcations that arise in the
unfolding of aninclination-fliphomoclinic orbit oriR3 and show that a suspended horseshoe is present in a tubular
neighbourhood of the unperturbed homaoclinic orbit. In this context, the additional degeneracy of the homoclinic
orbit comes from a non transversallity condition (see details below). Rychlik [19] shows that a geometrical Lorenz
attractor is present in the phase portrait of a three-dimensional vector field that unfolds a double inclination-flip
homoclinic orbit with aZ, symmetry. Earlier, Robinson [18] shows the same result when the non transversallity
condition is replaced by a resonant condition: the sum of two eigenvalues of the linear part of the vector field at
the singularity vanishes. The presence of complicated dynamics here is due to the change of the dynamics from
attracting to expanding inside the extended unstable manifold. However, the presence of a resonant term associate
with the resonance does not contribute to any qualitative change of the dynamic.

In this Note, we propose a scenario similar to that of [11] where the appearance of a resonant term yields to
qualitative changes of the dynamics. This will involve four degeneracy conditions.

LetX,,peDC R*, 0 € int(D) be a family of smooth vector-field di®, with the originO being a hyperbolic
equilibrium point. DX ,(0) has three real eigenvalues:(p) < —g(p) < 0 ande(p) > 0. We puto(p) =1, this
can be obtained by a time rescaling. This implies thgtossesses a local stable maniféig . of dimension 2 and
a local unstable manifol&g. of dimension 1. Since(0) > 8(0), there also exists a local strong stable manifold
Wi, that belongs to the local stable manifold and its tangent space at the equilibrium point is spanned by the
eigenspace associated witle (p). We extend these manifolds by the flow and denote their extensidvhyv“
and W** respectively. These manifolds are smooth, unique and invariant under the flow. However, there exists
a local invariant manifold¥, . containingW“, called anextended unstable manifglidls tangent space at the
equilibrium point is spanned by the eigenspaces associated with the eigenvgluesl 1. This manifold is not
unique but its tangent space along the unstable manifold does not depend on the choice of the extended unstabl
manifold. In general,’." is only C* [7]. We shall assume the family, to satisfy the following conditions. The
first conditions concern the global dynamicsXyf and the others concern the local dynamics near the origin.

(i) Xo possesses a non degenerate inclination-flip homoclinic orbit, see below for more details,
(i) «(0) =28(0) which is a resonant condition. The associated family of germs then take the following normal
form

X,(x,,2) =Y, + A(p)220/0y + G p(x, y, 2), (1)

whereY, = x & — oz(p)y% — B(p)L is the linear part andG , (x, y, 2)Il = o||(x, y, 2)||* consists of the
higher order terms, see explanations below.
(i) The resonant coefficient vanishes, i.e(P) = 0.

Our explanation now concerns condition (i) which says tkigtpossesses a homoclinic ortiit = {I"(¢) |
t € R} to the equilibrium point. This orbit is contained #* N W*. The second degeneracy condition is the
non transversallity condition mentioned above and is defined as follows. We sa¥/ tisa&n finclination-flip
homoclinic orbit if W,_;} is tangent toW* alongI". Indeed, this configuration occurs when two smooth functions

e, u:D—>R
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vanish, i.e..X, possesses an inclination-flip homoclinic orbit if and only(p) = 0= 1.(p). Heuristically, these
functions are defined as follows. Take a cross secidnansverse taV,; .. In X, ¢ stands for the distance between
Wi andW?*. When this distance vanishesrepresents the angle between the tangent space BftheX’ and that
of W,2 N X. Condition (i) concerns the eigenvalues. We wiitg)) = a(p) — 28(p). We assume that(0) =0
i.e., the unperturbed system admits a resonance between the negative eigenvalues. This further implies that the
normal form ofX, at the origin takes the form (1). Observe thétaa—y is a resonant term fo¥p. This explains
why we can expand the 2-jet of the family, fpr~ (0, 0, 0, 0) as above. Note that condition (iii) says that the
corresponding coefficient vanishes.

Before stating the main result of this paper, we introduce the following notationg. £ety, y1) € R?, § > 0.
The cubic Hénon map is defined as follows

M5 RZ—>R% (1, 0) > (yo+ yu +u® 4 6v, —8u),
with 82 as Jacobian. We say that a family of mEp 5 : R2 — R? is acubic Hénon-like familyf the family is close

to Hfo in the C3 topology of the uniform convergence on compact set and more precisely if there ex@ssuch
that

” Hy 5 — Hia ||c3 =0(@").

In what follows, S is a subsection transverse fa The local stable manifold,{. split S into two connected
components and™ is that where the Poincaré return mglp associated t& , is well defined.

Theorem 1.1. Let{X,, p € D} be a family of vector fields that satisfies the above four properties. We moreover
assume that/3 < 8(0) < 1/2 and that the map

0:D:—RY  prs (e(p), w(p), M(p), v(p))

is a diffeomorphism nead. Let S be a section transverse t6 and P, : St — S be the Poincaré return map
associated td{ ,. Then there exists a blow-up

YiRZx Ry x R—>RY (,8,0) > (e(y,8,v), (., 8,v), Ay, 8,v),v)

such thatg(y, 0, v) = A(y, 0, v) = u(y, 0, v) = 0. Furthermore,y is a diffeomorphism onto its image and for all
v, the family of map®,-1.,(, 5., is €qual to a cubic Hénon like map after a singular change of coordinates in
the sections.

A direct consequence of Theorem 1.1 is that the Poincaré return map is close to a bimodal map. From [5],
a strange attractor is present for a set of parameters with positive Lebesgue measure. Recall that a strange attractc

Fig. 1. The attractor for the valugy, y1) = (0.25, —2.478), with § = 0.508.
Fig. 1. L'attracteur pour les valeurs dgy, y1) = (0,25, —2,478), § = 0, 508.
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it possesses a dense orbit, a positive Lyapunov exponent and is non-hyperbolic. Moreover, this attractor is containec
in the closure of the unstable manifold of a fixed point of saddle type. Furthermosexfoitrarily close to 0, one

can construct examples wigly ~ 0, y1 ~ —2 such that the ma’b[+ possesses an attractor that with entropy close

to log 3, which is a topological obstruction for this attractor to be conjugated with the classical Hénon attractor
(Fig. 1). This Poincaré return map can be realized in the faijly Note that Holmes [8] suggested the cubic
Hénon map family as a model for the Poincaré return map associated with the Duffing’s equation [9].

2. Sketch of the proof

The proof of Theorem 1.1 is achieved by the following procedure. We fix a subsektianS such that the
Poincaré return map, : ST — S is well defined. This latter map is the composition of two maps: the Dulac map
which is the transition betweesi™ and an intermediate sectiofi transverse to the local unstable manifold and
a regular map which is the transition map franto S. We use results in [1,2,17] to compute the asymptotics of
the Dulac map and then those of the Poincaré return map. This latter, is singular at the intersection with the stable
manifold. We then show that for values of the parametém @1 o ¥ (y, 8, v), for all values ofv the Poincaré
return mapPy ;5. is close to the family,, s, after a singular rescaling in thie, v) coordinates. The techniques
developed to construct the blow up generalize those in [15,16].
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