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Abstract

In this Note we give a counter example to a conjecture of Malle which predicts the asymptotic behavior of the counting
functions for field extensions with given Galois group and bounded discrimifiartte this article: J. Kliners, C. R. Acad.
Sci. Paris, Ser. | 340 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Un contre-exemple & la conjecture de Malle sur le nombre de corps de discriminant borndans cette Note, nous
donnons un contre-exemple a une conjecture de Malle, qui prédit le comportement asymptotique du nombre de corps de cloture
galoisienne fixée et discriminant borrur citer cet article: J. Kluners, C. R. Acad. Sci. Paris, Ser. | 340 (2005).

0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let G < S, be afinite transitive permutation group antde a number field. We say that a finite extensiofk
has Galois grougs if the normal closurek’ of K /k has Galois group isomorphic @ andX is the fixed field in
K under a point stabilizer ofr. By abuse of notation we will write G&K / k) = G in this situation. We let

Z(k,G; x) :=#{K/k: Gal(K/k) =G, No(dk/k) <x}
be the number of field extensions lofinside a fixed algebraic closuf@) of relative degree with Galois group
permutation isomorphic t& (as explained above) and norm of the discriminggf; bounded above by. It is

well known that the number of extensionskofvith bounded norm of the discriminant is finite, heri¢é, G; x)
is finite for all G, k andx > 1.
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Malle [7,8] has given a precise conjecture about the asymptotic behavior of the fuActio&; x) for x — oo.
In order to state it, we introduce some group theoretic invariants of permutation groups.

Definition 1.1.Let 1# G < S, be a transitive subgroup acting éh={1, ..., n}.

(i) For g € G we define the index in@) :=n — the number of orbits of on £2.
(i) ind(G) :=min{ind(g): 1# g € G}.
(i) a(G):=ind(G)~L.

Since all elements in a conjugacy clasof G have the same index we can define(igin a canonical way.
The absolute Galois group éfacts on the set of conjugacy classego¥ia the action on thé)-characters o6.
The orbits under this action are calleetonjugacy classes.

Definition 1.2. For a number field and a transitive subgroupA G < S, we define:
bk, G) := #{C: C k-conjugacy class of minimal index i(lG)}.

Now we can state the conjecture of Malle [8], wheie:) ~ g(x) is a notation for lim_, o, f(x)/g(x) = 1.

Conjecture 1.3(Malle). For all number field% and all transitive permutation groufds# G there exists a constant
¢(k, G) > O such that

Z(k, G; x) ~ c(k, G)x* @ log(x)?*- 1
wherea(G) andb(k, G) are given as above.

This conjecture is proved for Abelian groups [9]. For all number fiéldsid all nilpotent group§ it is shown
in [6] that

logZ :
lim sup% <a(G).
X

X—>00 I
If we furthermore assume thét is in its regular representation, i.e., we count normal nilpotent number fields, we
get:

logZ(k, G; x) .

lim =a(G).

X—>00 logx

For more results see also the survey articles [1,2]. In the following we use the nofation= O(g(x)), if
limsup,_, ., f(x)/g(x) < co. Furthermore, we writgf (x) = 6(g(x)), if f(x) =0(g(x)) andg(x) = O(f (x)).

2. The counter example

We present a counter example to Conjecture 1.3 forQ) and the wreath produ¢t := C3:C> = C§ X C2 < Sg
of order 18, where&,, is the cyclic group of ordet.

Theorem 2.1.Conjecturel.3does not hold fok = Q andG = C3: C».

Proof. In the following we count all field towerg /K /Q such that GdlL/K) = C3 and GalK /Q) = C». There-
fore the Galois group of./Q is one of the group&s, S3(6), G < Ss, WwhereS3(6) denotes the groups in its
degree 6 representation. SinCgis Abelian we get from [9] that

Z(Q, Ce; x) ~ c(Co)x /3. @
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From the Davenport—Heilbronn theorem [3] we know that

Z(Q, S3(3); x) ~ c(S3(3))x.

Using the fact that the discriminant of the splitting field of &rextension is at least the square of the discriminant
of the S3-extension, we easily get that

Z(Q, $3(6); x) = O(x/?).

Since extensions with Galois groug(6) are normal we can use a result in [4, Proposition 2.8] which states that
Z(Q, S3(6); x) = O (x3/8+€) for all € > 0. With a more careful analysis we are able to prove

Z(Q. S3(6); x) =0(x1/3). @)

We remark that the results fdi3(6) and Cg are as conjectured sine&Cs) = a(S3(6)) = 1/3 andb(Q, Cs) =

b(Q, $3(6)) = 1.
Now we define the counting function corresponding to field towetk /Q as above:

Z(Q, C3:Co; x) = #{L/Q|3K: Gal(L/K)=C3,[K :Q] =2, |d| < x}.

We have two conjugacy classes of elements of order & imhich have three fixed points. Considered as
Q-conjugacy classes we have only one orbit. In number figld®ntaining a primitive third root of unitys

we have twak-conjugacy classes of this type. Therefar&) = 1/2 andb(Q, G) = 1. Since, by (1) and (2), the
counting functions fo53(6) andCg have lower asymptotics Conjecture 1.3 implies that

Z(Q.C31C2: x) ~ Z(Q, C32C2: x) ~ c(G)x"/2.
Certainly we get a lower estimate faQ, C3: Co; x) if we only count the number fields which contain a fixed
quadratic subfield . We choosek = Q(¢3) and usingl;, = d,%N(dL/K) we get forx large enough:
Z(Q,C3:C2;x) 2 Z(K, C3; x/27) ~ c(K, C3)x Y log(x).

For the latter we used the fact thatK, C3) = 2 and that the conjecture is true for the Abelian gr@igp This
already gives a contradiction to Conjecture 1.8

Now we introduce a counting function avoidifi@(¢s).
Z(Q, C32C2; x) =#{L/Q|3K #Q(¢3): GallL/K) =C3,[K : Q] =2, |d| <x}.
Using the averaging results for the 3-ranks of the class group of quadratic fields [3] we can prove that
Z(Q, C31Co; x) ~ ¢(C3: C2)x*?  for some constant(Cz: Co) > 0

as predicted by Malle’s conjecture. This means that the cyclotomic intermediate extension is the reason for the
failure of the conjecture.

We remark that we can produce more counter examples in the same spirit in the following way. @efine
C¢;  H and assume that there exists BAQ such that GalL/Q) = H and K := L N Q(¢y) # Q. We remark
that we have the identity(G) = a(Cy) = £ — 1. Now we are in the situation thal(Q, G) = b(Q, Cy) =1 and
b(K,G)=b(K,Cy) = —1)/[K : Q] > 1. Analogously as in the proof of Theorem 2.1 there exi$ts) > 0
such that

Z(Q, G; x) > ¢(G)x*D log(x)?K- D=1 for x large enough
The following example shows that this happens infinitely often.

Example 1.Let G = C;: Co for an odd primel. ThenL = K := Q(+/£¢) € Q(¢&,) has the wanted property.

We remark that for > 3 we are only able to prové(Q, C; : C2; x) = O(x¥ @) since we do not know good
estimates for thé-rank of the class group of quadratic fields in these cases.
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3. Comments about the conjecture

It is interesting to look at the global function field case. Malle’s conjecture can be easily generalized to this
setting and these generalizations are true for Abelian groups [9]. In the function field setting it is natural to consider
only extensionsX /I, (¢) such that the normal closure contains no constant field extension. Assuming this and some
(unproven) heuristic about the number of points of irreducible varietieslgueEllenberg and Venkatesh [5] are
able to deduce

Z(Fy (1), G; x) = 0 (x* @ log(x)?®aO-O=1)  for ged#G, ¢) = 1.

If we allow constant field extensions we can give the type of counter examples as in the number field case. E.g.
choosingg =2 mod 3 andG = C3: C2 works as a counter example, when we chobgg/F, as the quadratic
extension.

Constant field extensions are always contained in extensions generated by suitable roots of unity. We could fix
the conjecture in the number field case if we forbid intermediate extensions which are contained in cyclotomic
extension€)(¢,), where¢ must be chosen from a set containing all orders of elementswhich have minimal
index. But this is not very natural in the number field case.

The problem in the presented counter examples is that there exist intermediate extErgichshab (Q, G) <
b(K, G). The following example shows that this is not sufficient to produce counter examples. E.g. for the group
G =(C3:C3) x Cowe geta(G) =1/4,b(Q, G) =1, b(Q(¢3), G) = 2. We can prove that

Z(Q, G; x) =6 (x4,

Therefore this group does not contradict Conjecture 1.3. Similar to our original example it is possible to choose
K = Q(¢3) as an intermediate extension, but this time it does not change the log-factor.

Since we do not know if there are other type of groups which contradict Conjecture 1.3 we do not give a new
formulation of this conjecture.

Acknowledgements

| thank Karim Belabas and Gunter Malle for fruitful discussions and reading a preliminary version of the paper.

References

[1] K. Belabas, Paramétrisation de structures algébriques et densité de discriminants [d'aprés Bhargava], Séminaire Bourbaki, 56éme année
(935), 2004.

[2] H. Cohen, F. Diaz y Diaz, M. Olivier, A survey of discriminant counting, in: Algorithmic Number Theory (Sydney, 2002), in: Lecture Notes
in Computer Science, vol. 2369, Springer, Berlin, 2002, pp. 80-94.

[3] H. Davenport, H.A. Heilbronn, On the density of discriminants of cubic fields. Il, Proc. Roy. Soc. London Ser. A 322 (1551) (1971)
405-420.

[4] J. Ellenberg, A. Venkatesh, The number of extensions of a number field with fixed degree and bounded discriminant, math.NT/0309153,
2003.

[5] J. Ellenberg, A. Venkatesh, Counting extensions of function fields with bounded discriminant and specified Galois group, in: Geometric
Methods in Algebra and Number Theory, in: Progr. Math., vol. 235, Birkh&user, 2005, pp. 151-168.

[6] J. Kliiners, G. Malle, Counting nilpotent Galois extensions, J. Reine Angew. Math. 572 (2004) 1-26.

[7] G. Malle, On the distribution of Galois groups, J. Numer. Theory 92 (2002) 315-322.

[8] G. Malle, On the distribution of Galois groups II, Exp. Math. 13 (2004) 129-135.

[9] D. Wright, Distribution of discriminants of Abelian extensions, Proc. London Math. Soc. 58 (1989) 17-50.



