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Abstract

We consider a closed hypersurfate® c S#(1) with identically zero GauR—Kronecker curvature. We prove thaf¥has
constant mean curvatuié, thenM3 is minimal, i.e.,H = 0. This result extends Ramanathan’s classification (Math. Z. 205
(1990) 645-658) result of closed minimal hypersurfac&“oi) with vanishing Gaul3—Kronecker curvatufe.citethisarticle:

T. Lusala, A. Gomesde Oliveira, C. R. Acad. Sci. Paris, Ser. | 340 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Hyper surfacesfer méesdeS4(l) a cour bure moyenne constante et a cour bure de GauR—Kronecker nulle. Nous considé-
rons une hypersurface fermée (compacte et sans boray S4(1) a courbure de GauR—Kronecker identiquement nulle. Nous
prouvons que si la courbure moyentiede M3 est constante, alors I'hypersurfage® est necéssairement minimale, c.a.d,
H = 0. Ce résultat généralise celui obtenu dans I'article de Ramanathan (Math. Z. 205 (1990) 645-658) concernant les hyper-
surfaces fermées minimales a courbure de GauR—Kronecker identiquement nuBé @anBour citer cet article: T. Lusala,

A. Gomes de Oliveira, C. R. Acad. Sci. Paris, Ser. | 340 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let M3 c S*(1) be a closed hypersurface in the unit Euclidean spBé¢&). Denote byH, o, and K, the
mean curvature, the second elementary symmetric function and the GauR—Kronecker curvature fud¢ipn of
respectively. Aimeida and Brito [2] proposed to classify the closed hypersuvfaeehen two of its three curvature
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functionsH, o2 andK are constant. The survey of results in [4] shows that the case Whisrtonstant is not yet
completely solved. In particular fa = const £ 0 andH = 0, Almeida and Brito [1] proved tha¥3 must be an
isoparametric hypersurface; and fiir= const + 0, they obtained the same conclusion [2] but under an additional
condition that% > —3. This technical condition has been recently removed in [3]. Therefore thekcasé and

H = const # 0 remains of interest. Ramanthan [10] gave a complete classification of closed minimal hypersurface
of S#(1) with zero GauR—Kronecker curvature. Namely he proved the following classification result:

Theorem 1.1 (Ramanathan [10])Let M3 be a compact orientable 3-dimensional manifold and x : M — S*(1) a
minimal hypersurface immersion of M3. If the GauR-Kronecker curvature of M2 isidentically zero, then either

(i) M3=S3(1) or

(ii) there exist a minimal immersion g: N2 — S*(1) of a compact surface N2 and a map = : M3 — N, such that
x=2xg07,Where Ny = {(p,0) € N2x R% [[§]| =1, ¥ LR- g(p) + g«(T,N?)} isthe unit normal bundle of
theimmersion g and x, : Ny — S4(1) isthe projection to the second factor.

In this short paper, we show that instead of the minimality assumption in this classification result, one can
consider that the mean curvature of the closed hypersurface with identically zero Gauf3—Kronecker curvature is
constant. Namely we prove (main result)

Theorem 1.2. Let M3 c S*(1) be a closed hypersurface immersed in S#(1) with identically zero GauRR—Kronecker
curvature. If M3 has constant mean curvature, then M2 isa minimal hypersurface.

This provides, using Ramanathan’s result, a complete classification of closed hypersurfu@s with con-
stant mean curvature and identically zero Gau3B—Kronecker curvature.

Remark 1. If the rank of the second fundamental form of a closed hypersusigtminimally immersed int&s*(1)

with identically zero Gaul3—Kronecker curvature is constant (equal to 2), Theorem 1.1 was proved in [1]. In this
case,M?3 is a boundary of a tube which is built over a non-degenerate minimal 2-dimensional surface immersion
in S*(1) with geodesic radiug .

2. Notations and facts

Let x: M3 — S*1) be a 3-dimensional immersed hypersurface in the unit Euclidean 4-sphére Let
{e1, ..., es) be alocal orthonormal frame fields 8f(1) such thaty, e» andes are tagential ta3, {wy, ..., wa)
the corresponding dual frame afwi;} be the connection 1-forms. The structure equatior&*¢f) are given by

1 _
deZZwAB Awp, wap~+wpa=0, deBZ—ZCUAC /\a)CB—EZRABCDCUC/\CUD7
B C C.D

where Ragcp = dacdsp — Sapdpc defines the curvature tensor §f(1). Now we restrict all tensors ta/3.
Becausevs = 0, we have) ; ws; A w; = dws = 0. By Cartan’s lemma, we havey; = Zj hijwj, With hj; = h ;.
The tensom = Zi,j hijwjw; is the so called second fundamental form. The eigenvalued the matrix(s;;)
are the principal curvatures. The elementary functifins %trace{hij) =), S= Zi’j hizj =), Al.z andK =
det(h;;) = []; Ai, are known to be the mean curvature, the square of the length of the second fundamental form and
the GauR—Kronecker curvature &3, respectively. The restricted structure equationgthimply the following
integrability conditions (Gauf3 and Codazzi equatio®s)i; = (8;x8;1 — 8118jk) + (hixhji — hithji), hijk = hig;,
whereR is the curvature tensor @3, and the covariant derivative jx of &;; is defined by}, h;jxwr = dhij +
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S hijori + Y g hrionj. Let fi (k =3, 4) denote the smooth function au defined byf; = Z?:lkf?. Defining
the functionsu; :=; — H, we have thad ", u; = 0. The following classical formulas for the LaplaciansSoéind
f3 are well known and can be found in many papers such as [5-9]:

1 2 2
SAS=@-95-9H +3Hf3+Zhijk, )
i,j.k
1
§Af3=(3—S)f3+3Hf4—3HS+ZZAih,?jk. @)
i,j.k

3. Proof of the main result

Assume from now on that the closed hypersurfa¢g has constant mean curvature and vanishing GauR3—
Kronecker curvature function. In this case the characteristic polynomial of the ngafyixis given by p(1) =
A3 —3H2? + 1(9H? - 5)1. Because the principal curvatures are real, we have $1at@H2 > 0 everywhere, in

particular we have that misi> 3 H2.
It also follows that the functiongz and f4 can be expressed in terms Bfands:

9 81 , 1
fo=5HS=3H?), and fa=—— H*+ 5% +9H"S. @)

Since the mean curvatu#g is constant, we can write

1 1

—Af3=3H| =AS|. 4

sasa=3t(305) @
Using the expressions (1) and (2) of the Laplacians @ind f3, the following equation can be deduced from
Eq. (4):

27TH® + (3— S —9H?) f3+3Hfs+3HS(S — 4 +2)  uih?, +3H Y h%, =0,

ij.k i,j.k

Now take a maximum poing of S in M23. Sincek = 0, we can assume thag(p) = A3 = 0. Suppose that; = A,
at p. In this case, we have thaj = A, = %H. Somaxs = S(p) = %Hz =minS. This implies thatS is constant.
ThereforeM? is isoparametric with at most two distinct principal curvatures, tidss the totally geodesic great
sphereS3(1). Suppose that, # A, at p. If 12(p) = 0 (similar case if we considér,(p) = 0), theni1(p) = 3H.
SoS(p) = 9H? and f3(p) = 27H3. We have that

1
0> SAS(p)= @3- 9H?) —9H +81H*+ ) " h?, =18H*+ ) "h?, >0,
i,j.k i,j.k

implying in particular thatd = 0. This is a contradiction sinc = 111(p) # A2(p) = 0. Therefore the three

principal curvatures have to be distinctaif 11 # A». In this last case, we want to prove thd® must only be
minimal. We have ap for anyk:

hi1x + hox + h3x =0 (H =const),
Ahiy + Azhox =0 (VS(p)=0 and i3(p)=0),

9
Ahiy + A3hox =0 (Vfa(p) = SHVS(p)=0 and 13(p)=0).
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Because the three principal curvatures are distingt,ate haveh;;; = 0 at p for anyi, k. It follows that atp,
Yo juhf =6h3yzandy"; ; y wih?, =2(u1 + p2 + ua)hiy = 0. Hence,

27TH® + (3~ S — 9H?) f3+ 3H fa+ 3HS(S — 4) + 18Hh{p3=0.

The insertion of the expressions (3) £f and f4 into the equation above provides
1
3H <6h§23(p) + E(S(p) — 9H2)> =0.

ThereforeH = 0, i.e, M2 is minimal. Otherwise, we haveh@zg(p) = %(9H2 — S(p)). To finish the proof, we
have to show that this later case cannot occur. SupposéeHtha. In this case we get an upper bound for
SH? < S <9H?2. The Laplacian of at the maximum poinp is given by

0> %AS(p) =(B—9)S(p) —9H*+3Hf3+ Y hi = %(5+ 27H%)S(p) — gHZ - %IH“ — S2%(p).
i,j,k
This provides the following second order polynomial inequalit§ ip) with constant coefficients (depending only
on the constankl): $2(p) — 3(5+27H?)S(p) + 3H% + & H* > 0. ThereforeS(p) < S_(p) or S(p) > S+ (p),
where Sy (p) = 3 + 2/ H? + 1/25+ 198H2 + 81H2. If S(p) < S_(p), then we hav€ H? < S(p) < S_(p) <
SH2. This is absurd. Also i§(p) > S, (p), then we have B2 > S(p) > S4(p) > 2 + 9H?, which is impossible.
This completes the proof.
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