

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 339 (2004) 709-712

http://france.elsevier.com/direct/CRASS1/

Probability Theory

Level sets of β -expansions

Aihua Fan a,b, Hao Zhu a

^a Department of Mathematics, Wuhan University, 430072, Wuhan, China ^b LAMFA, UMR 6140 CNRS, université de Picardie, 33, rue Saint Leu, 80039 Amiens, France

Received 5 June 2004; accepted after revision 27 September 2004

Available online 28 October 2004

Presented by Yves Meyer

Abstract

Let $\{\epsilon_n(x)\}_{n\geqslant 1}$ be the sequence of β -digits of a real number $x\in(0,1)$, with the golden number $\beta=(\sqrt{5}+1)/2$ as basis. For any $0\leqslant p\leqslant 1/2$, any $0<\tau\leqslant 1$ and any real number a, we consider the level set consisting of numbers x such that $\sum_{n=1}^{\infty}(\epsilon_n(x)-p)/n^{\tau}=a$. We prove that the Hausdorff dimension of this set is independent of a and τ , and that it is equal to $\log f(p)/\log \beta$ where $f(p)=(1-p)^{1-p}/((1-2p)^{1-2p}p^p)$. To cite this article: A. Fan, H. Zhu, C. R. Acad. Sci. Paris, Ser. I 339 (2004).

© 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Ensembles de niveau des β -développements. Soit $\{\epsilon_n(x)\}_{n\geqslant 1}$ la suite de β -digits du nombre réel $x\in(0,1)$, avec le nombre d'or $\beta=(\sqrt{5}+1)/2$ comme base. Pour tout $0\leqslant p\leqslant 1/2$, $0<\tau\leqslant 1$ et $a\in\mathbb{R}$, nous considérons l'ensemble de niveau qui est constitué des x tels que $\sum_{n=1}^{\infty}(\epsilon_n(x)-p)/n^{\tau}=a$. Nous prouvons que la dimension de Hausdorff de cet ensemble est independante de a et τ , et qu'elle est égale à $\log f(p)/\log \beta$ où $f(p)=(1-p)^{1-p}/((1-2p)^{1-2p}p^p)$. Pour citer cet article : A. Fan, H. Zhu, C. R. Acad. Sci. Paris, Ser. I 339 (2004).

© 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let $\beta > 1$ be a real number. It is well known that any number $x \in [0, 1)$ has a β -expansion $x = \sum_{i=1}^{\infty} \varepsilon_i(x)/\beta^i$ where $\varepsilon_i(x) = [\beta T^{i-1}(x)]$, $T(x) = \beta x \pmod{1}$ being the β -shift on [0, 1) and [y] denoting the integral part of a real number y (see [8,7]). We call $\{\varepsilon_n(x)\}_{n\geqslant 1}$ the sequence of β -digits of x. In this note we study the distribution of the β -digits for different numbers x when $\beta = (\sqrt{5} + 1)/2$ is the golden number.

E-mail addresses: ai-hua.fan@u-picardie.fr (A. Fan), rendong77@yahoo.com.cn (H. Zhu).

1631-073X/\$ – see front matter © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved. doi:10.1016/j.crma.2004.09.026

Let $S_n(x) = \sum_{j=1}^n \epsilon_k(x)$. We introduce the following sets:

$$E(p) = \left\{ x \in [0, 1) \colon S_n(x) - np = o(n) \right\} \quad \left(p \in [0, 1/2] \right),$$

$$L(p, \tau, a) = \left\{ x \in [0, 1) \colon \sum_{k=1}^{\infty} k^{-\tau} \left(\epsilon_k(x) - p \right) = a \right\} \quad \left(p \in [0, 1/2], \ 0 < \tau \leqslant 1, \ a \in \mathbb{R} \right),$$

and we consider the Hausdorff dimensions of these sets. It is well known that dim $E(p) = \log f(p)/\log \beta$ with $f(p) = (1-p)^{1-p}/((1-2p)^{1-2p}p^p)$ (see [3], for example). Observe that the level sets $L(p, \tau, a)$ are disjoint subsets of E(p). However, we prove that they have all the same dimension as E(p).

Theorem 1.1. We have dim
$$L(p, \tau, a) = \dim E(p)$$
 for all $0 \le p \le 1/2, 0 < \tau \le 1$ and $-\infty < a < +\infty$.

The result is a kind of refinement of Birkhoff ergodic theorem. Another kind of refinement is considered in [2]. The method for proving the above theorem could be adapted for other Pisot numbers $\beta > 1$ than the golden number. For the dyadic expansion (i.e. $\beta = 2$), the function f(p) must be replaced by $p^p(1-p)^{1-p}$ where $0 \le p \le 1$. Wu [9] and Xi [10] studied the dyadic case with p = 1/2 (the mean value of $\epsilon_n(x)$ with respect to the Lebesgue measure) and proved that $\dim_H L(1/2, \tau, a) = 1$. Earlier, Beyer [1] showed the inequality $\dim_H L(1/2, \tau, a) \ge 1/2$.

Our study gives a very partial contribution to the following general problem. Given any function ϕ , we consider $S_n\phi(x)=\sum_{j=0}^{n-1}\phi(T^jx)$. For any ergodic invariant measure μ , the Birkhoff theorem asserts that $S_n\phi(x)-n\int \phi\,\mathrm{d}\mu=o(n)$ for μ -almost all x. In [2], we have studied possible refinements by considering points x such that $S_n\phi(x)-n\int \phi\,\mathrm{d}\mu \approx n^{\tau}$ with $0<\tau<1$. Another way to refine the Birkhoff theorem is to consider the set of points such that the series $\sum_{n=1}^{\infty}a_n(\phi(T^jx)-\int \phi\,\mathrm{d}\mu)$ converges, where a_n is a decreasing positive sequence. Our above theorem concerns nothing but the occurrence of digits, for ϕ is the characteristic function of the interval $[0,\beta^{-1}]$. The general case remains unsolved. Another special case is the trigonometric series $\sum_{n=1}^{\infty}a_n(e^{2\pi i 2^nx}-p)$ where p may be complex. It corresponds to p = 2, p = 2, p = 0 (the mean value of p = 2 and p = 0 (the mean value of p = 2 and p = 2 (see [6]). Little is known about the level sets of this series.

2. Preliminaries

Let $a_n = n^{-\tau}$. The sequence $\{a_n\}$ shares the following property, the most useful one to us,

$$\lim_{n \to \infty} a_n = 0, \quad \sum_{n=1}^{\infty} |a_n| = +\infty, \quad \sum_{n=1}^{\infty} |a_n - a_{n+1}| < +\infty.$$
 (1)

It is known [7] that for the golden number β , the set of sequences of β -digits coincides with the subshift of finite type Σ_A determined by the matrix $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, with an exception of a countable set which will be taken off, because the transformation $Tx = \beta x \pmod{1}$ is Markovian. Let $\eta: [0,1) \to \Sigma_A$ be the function, which associates x to its β -digits $\{\varepsilon_n(x)\}$, is one-to-one except for a countable set and is strictly increasing when Σ_A is endowed with the lexicographical order.

Any finite or infinite sequence of 0 or 1 which does not contain the string 11 is said to be admissible. For any admissible sequence $\{\epsilon_n\}_{1\leqslant n\leqslant N}$, the β -interval $I(\epsilon_1,\ldots,\epsilon_N)$ is defined to be the set of all $x\in[0,1)$ such that $\epsilon_n(x)=\epsilon_n$ for $1\leqslant n\leqslant N$. A natural metric on Σ_A is defined by $d(\epsilon,\eta)=\beta^{-n}$ where n is the largest integer such that $\epsilon_i=\eta_i$ for $1\leqslant i\leqslant n$. The β -interval $I(\epsilon_1,\ldots,\epsilon_n)$ has a length of order β^{-n} (see [4]).

Let $J \geqslant 1$ be a big fixed integer. We define the 'killing map' $\widehat{T}: \Sigma_A \to \Sigma_A$ by

$$\widehat{T}(\varepsilon_1, \varepsilon_2, \ldots) = (\eta_1, \eta_2, \ldots),$$

where $\eta_n = 0$ or ϵ_n according to n is a multiple of J or not. Notice that \widehat{T} is Lipschitzian. Then consider the map $T: [0,1) \to [0,1)$ defined by $T = \eta^{-1} \widehat{T} \eta$.

Lemma 2.1. We have $\dim_H TE \leq \dim_H E$ for any set $E \subset [0, 1)$.

Proof. It suffices to notice that both η and η^{-1} preserve the Hausdorff dimension and that \widehat{T} is Lipschitzian. \square

Lemma 2.2 (Kaczmarz–Steinhaus [5]). Suppose that $\{a_n\}$ is sequence of real numbers such that $\lim_{n\to\infty} a_n = 0$ and $\sum_{n=1}^{\infty} |a_n| = \infty$ and that $\{p_n\}$ and $\{q_n\}$ be two sequences of real numbers such that $-\Delta \leqslant q_n \leqslant -\delta$ and $\delta \leqslant p_n \leqslant \Delta$ for some constants $\Delta \geqslant \delta > 0$. Then for any real number a, there is a sequence $\{R_n\}$ with $R_n = p_n$ or q_n such that $\sum_{n=1}^{\infty} a_n R_n = a$.

Proof. We may choose R_n inductively. Suppose that R_1, \ldots, R_n are chosen. We take $R_{n+1} = q_{n+1}$ if $\sum_{j=1}^n a_n R_j > a$; otherwise we take $R_{n+1} = p_{n+1}$. \square

Lemma 2.3. Let $\{\epsilon_k\}_{k\geqslant 1} \in \{0,1\}^{\mathbb{N}}$ and $\{a_k\}_{k\geqslant 1} \in \mathbb{R}^{\mathbb{N}}$. For any integers n < m, denoting $\mu = \frac{1}{m-n} \sum_{j=n+1}^m \epsilon_j$ (i.e. the frequency of 1) we have

$$\left| \sum_{k=n+1}^{m} a_k(\epsilon_k - \mu) \right| \leqslant \sum_{j=n+1}^{m} \epsilon_j \sum_{k=n+1}^{m} |a_k - a_{k-1}|.$$

Proof. Let $N = \sum_{j=n+1}^{m} \epsilon_j$. We may write

$$\sum_{k=n+1}^{m} a_k(\epsilon_k - \mu) = \frac{1}{n-m} \left[\sum_{k: \epsilon_k = 1} (n-m)a_k - \sum_{k=n+1}^{m} Na_k \right].$$

Both sums at the right-hand side may be considered as sums of a_i 's with N(n-m) terms. Notice that for any a_i and a_j with $n < i < j \le m$ we have

$$|a_i - a_j| \le \sum_{k=i+1}^j |a_k - a_{k-1}| \le \sum_{k=n+1}^m |a_k - a_{k-1}|.$$

So,
$$|\sum_{k=n+1}^{m} a_k(\epsilon_k - \mu)| \le N \sum_{k=n+1}^{m} |a_k - a_{k-1}|$$
. \Box

3. Proof

We have only to prove $\dim L(p,\tau,a)\geqslant \log f(p)/\log \beta$ for 0< p<1/2. Take an infinite number of couples of integers (J,W) such that W/(J-1)< p<(W+1)/(J-1). For such a fixed couple (J,W), we construct a set $F_J\subset [0,1]$ as follows. Let G_J' be the set of the β -admissible sequences $\{\varepsilon_n\}_{1\leqslant n\leqslant J}$ of length J such that (i) $\varepsilon_1=0,\ \varepsilon_{J-1}=\varepsilon_J=0$; (ii) $\sum_{i=1}^{J-1}\varepsilon_i=W$. Let G_J'' be the set of the β -admissible sequences $\{\varepsilon_n\}_{1\leqslant n\leqslant J}$ of length J such that (iii) $\varepsilon_1=0,\ \varepsilon_{J-1}=\varepsilon_J=0$; (iv) $\sum_{i=1}^{J-1}\varepsilon_i=W+1$. For any $t\geqslant 1$, let $\Lambda_t=[J(t-1)+1,\ Jt-1]\cap \mathbb{N}$ and $A_t=\sum_{i\in \Lambda_t}a_i$. We have $\sum_{t=1}^{\infty}|A_t|=\infty$ and $\lim_{t\to\infty}A_t=0$. Notice that W/(J-1)-p<0 and W+1)/(J-1)-p>0. By Lemma 2.2, for any $\alpha\in \mathbb{R}$ we can find a sequence $\{r_t\}_{t\geqslant 1}$ with $r_t=W/(J-1)-p$ or (W+1)/(J-1)-p such that

$$\sum_{t=1}^{\infty} A_t r_t = \alpha. \tag{2}$$

Define $G_t = G_J'$ or G_J'' according to $r_t = W/(J-1) - p$ or (W+1)/(J-1) - p. Then define $G = \prod_{t=1}^{\infty} G_t$ and F_J to be the set of all $x = \sum_{n=1}^{\infty} \varepsilon_n/\beta^n$ with $\{\varepsilon_n\}_{n\geqslant 1} \in G$. Now for $\{\varepsilon_n\}_{n\geqslant 1} \in G$, we are going to show the convergence of the series $\sum_{i\in\mathbb{N}\setminus J\mathbb{N}}^{\infty} a_i(\varepsilon_i-p)$. Let $B_t = \sum_{i\in\Lambda_t} a_i(\varepsilon_i-W/(J-1))$ or $\sum_{i\in\Lambda_t} a_i(\varepsilon_i-(W+1)/(J-1))$ according to $r_t = W/(J-1) - p$ or (W+1)/(J-1) - p. Then we have $\sum_{i\in\Lambda_t} a_i(\varepsilon_i-p) = B_t + A_t r_t$. By Lemma 2.3, we have $|B_t| < (W+1)\sum_{i\in\Lambda_t} |a_{i+1}-a_i|$. It follows that $\sum_{t=1}^{\infty} |B_t| < +\infty$. Thus $\sum_{t=1}^{\infty} B_t$ is convergent. We denote its sum by γ . This convergence, together with (2), implies

$$\sum_{i=1\in\mathbb{N}\setminus J\mathbb{N}} a_i(\varepsilon_i - p) = \sum_{t=1}^{\infty} \sum_{i\in\Lambda_t} a_i(\varepsilon_i - p) = \gamma + \alpha.$$
(3)

According to Lemma 2.2, we can find a new sequence $\{\varepsilon'_{Ii}\}$ taking in $\{0, 1\}$ such that

$$\sum_{i=1}^{\infty} a_{Ji} (\varepsilon'_{Ji} - p) = a - (\gamma + \alpha). \tag{4}$$

Let $E_J = \eta^{-1} \widetilde{T} \eta(F_J)$. By (3) and (4), we get $E_J \subseteq L_a$ then $F_J \subset TL_a$.

By Lemma 2.1, we have to estimate $\dim F_J$ from below. For $1 \leqslant i_t \leqslant \operatorname{Card} G_t$ $(1 \leqslant t \leqslant n)$, let $U_{i_1 i_2 \cdots i_n} = [x_{i_1 i_2 \cdots i_n}, x_{i_1 i_2 \cdots i_n} + \beta^{-Jn}]$ where $x_{i_1 i_2 \cdots i_n} = \sum_{k=1}^{Jn} \varepsilon_k / \beta^k$ with $(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_{Jn}) \in \prod_{t=1}^n G_t$. The interval $U_{i_1 \cdots i_n}$ is nothing but the β -interval $I(\varepsilon_1, \dots, \varepsilon_{Jn})$. Since $\varepsilon_{Jn-1} = 0$, all these intervals $U_{i_1 i_2 \cdots i_n}$ are disjoint. We have the expression $F_J = \bigcap_{n=1}^\infty \bigcup_{i_1 i_2 \cdots i_n} U_{i_1 i_2 \cdots i_n}$. Define the set function μ by

$$\mu(U_{i_1i_2\cdots i_n}) = \frac{1}{(\operatorname{Card} G_I')^{u_n}(\operatorname{Card} G_I'')^{v_n}},$$

where u_n is the number of G'_J 's in the sequence $\{G_1,\ldots,G_n\}$ and $v_n=n-u_n$. We can extend μ to a Borel probability measure on F_J . Write $\mu(U_{i_1i_2\cdots i_n})=|U_{i_1i_2\cdots i_n}|^{s_n}$ where $s_n=(u_n\log\operatorname{Card} G'_J+v_n\log\operatorname{Card} G''_J)/(nJ\log\beta)$. Without loss of generality, we assume $\operatorname{Card} G'_J \geqslant \operatorname{Card} G''_J$. Then

$$\mu(U_{i_1i_2\cdots i_n})\leqslant |U_{i_1i_2\cdots i_n}|^{\frac{\log\operatorname{Card}G_J'}{J\log\beta}}.$$

This inequality remains true for general intervals instead of $U_{i_1i_2\cdots i_n}$ because the lengths of intervals $U_{i_1i_2\cdots i_n}$ (n being fixed) are between $c_1\beta^{-Jn}$ and $c_2\beta^{-Jn}$ for some constants $0 < c_1 \leqslant c_2$. Then by the Frostman lemma, we get $\dim_H F_J \geqslant (\log \operatorname{Card} G_J')/(J\log \beta)$. Notice that $\operatorname{Card} G_J' = \binom{J-3-W}{W}$ is a combinatorial number; it is easy to compute $\lim_J (\log \operatorname{Card} G_J')/J = \log f(p)$. Since $L_a \supset E_J$, we have proved the theorem.

References

- [1] W.A. Beyer, Hausdorff dimension of level set of some Rademacher series, Pacific J. Math. 12 (1962) 35-46.
- [2] A.H. Fan, J. Schmeling, On fast Birkhoff averaging, Math. Proc. Cambridge Philos. Soc. 135 (3) (2003) 443-467.
- [3] A.H. Fan, D.J. Feng, J. Wu, Recurrence, dimension and entropy, J. London Math. Soc. 64 (2001) 229-244.
- [4] A.M. Garsia, Arithmetic properties of Bernoulli convolutions, Trans. Amer. Math. Soc. 102 (1962) 409–432.
- [5] S. Kaczmarz, H. Steinhaus, Le système orthogonal de M. Rademacher, Studia Math. 2 (1930) 231-247.
- $[6] \ J.P.\ Kahane,\ Lacunary\ Taylor\ series\ and\ Fourier\ series,\ Bull.\ Amer.\ Math.\ Soc.\ 70\ (1964)\ 199-213.$
- [7] W. Parry, On the β -expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960) 401–416.
- [8] A. Rényi, Representation for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957) 477–493.
- [9] J. Wu, Dimension of level sets of some Rademacher series, C. R. Acad. Sci. Paris, Ser. I 327 (1998) 29-33.
- [10] L.F. Xi, Hausdorff dimension of level sets of Rademacher series, C. R. Acad. Sci. Paris, Ser. I 331 (2000) 953-958.