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Abstract

Let {ex(x)},>1 be the sequence @-digits of a real numbes € (0, 1), with the golden numbeg = (v/5+ 1)/2 as basis.
For any 0< p < 1/2, any O< 7 < 1 and any real number, we consider the level set consisting of humbersuch that
Y02 1 (en(x) — p)/n" = a. We prove that the Hausdorff dimension of this set is independentanid z, and that it is equal
to log £ (p)/log B where f(p) = (1 — p)}=P /(1 — 2p)1=2P pP). To cite thisarticle: A. Fan, H. Zhu, C. R. Acad. Sci. Paris,
Ser. | 339 (2004).

0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Ensemblesde niveau des B-développements. Soit{e, (x)},,>1 la suite deg-digits du nombre réet € (0, 1), avec le nombre
dor g = (+/5+ 1)/2 comme base. Pour toutQp < 1/2, 0< v < 1 eta € R, nous considérons I'ensemble de niveau qui est
constitué des tels quesz;l (en(x) — p)/n™ = a. Nous prouvons que la dimension de Hausdorff de cet ensemble est indepen-
dante dex ett, et qu'elle est égale alog(p)/logB ol f(p) = (L — p)L=P /(1 — 2p)1=2P pP). Pour citer cet article: A. Fan,
H. Zhu, C. R. Acad. Sci. Paris, Ser. | 339 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let 8 > 1 be a real number. It is well known that any numieg [0, 1) has g8-expansion =Y °2; ¢; (x)/B!
wheres; (x) = [BT'~1(x)], T (x) = Bx (mod 1) being thes-shift on[0, 1) and[y] denoting the integral part of a
real number (see [8,7]). We calle, (x)},>1 the sequence @#-digits of x. In this note we study the distribution
of the B-digits for different numbers wheng = (v/5+ 1)/2 is the golden number.
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LetS,(x) = Z?zl € (x). We introduce the following sets:

E(p) = {x €[0,1): S,(x) —np =0(n)} (p € [0, 1/2]),
L(p,t,a)= {x €[0, 1): Z,filk_f(ek(x) — p) :a} (p €[0,1/2], 0<1t <1, a GR),

and we consider the Hausdorff dimensions of these sets. It is well known tha& (giym= log f (p)/log 8 with
f(p)=A—p)lP/((1-2p)t2rpPr) (see [3], for example). Observe that the level detp, 7, a) are disjoint
subsets o (p). However, we prove that they have all the same dimensidi(a3.

Theorem 1.1. WehavedimL(p, t,a) =dimE(p) forall 0< p <1/2,0<t < land —oco <a < +o0.

The result is a kind of refinement of Birkhoff ergodic theorem. Another kind of refinement is considered
in [2]. The method for proving the above theorem could be adapted for other Pisot nufmbelsthan the
golden number. For the dyadic expansion (Be= 2), the functionf(p) must be replaced by? (1 — p)1—»
where 0< p < 1. Wu [9] and Xi [10] studied the dyadic case with= 1/2 (the mean value of, (x) with re-
spect to the Lebesgue measure) and proved that difi/2, t,a) = 1. Earlier, Beyer [1] showed the inequality
dimg L(1/2,t,a) > 1/2.

Our study gives a very partial contribution to the following general problem. Given any fungtiome
consider S, ¢ (x) = Z’};(l)d)(fo). For any ergodic invariant measuye, the Birkhoff theorem asserts that
Spp(x) —n [ ¢ du = o(n) for u-almost allx. In [2], we have studied possible refinements by considering peints
such thatS, ¢ (x) —n [ ¢ du < n™ with 0 < t < 1. Another way to refine the Birkhoff theorem is to consider the set
of points such that the seris’ ; a, (¢ (T/x) — J ¢ du) converges, where, is a decreasing positive sequence.
Our above theorem concerns nothing but the occurrence of digitg,ifathe characteristic function of the interval
[0, B~1]. The general case remains unsolved. Another special case is the trigonometrig $erjes (e%Ti2'x _ p)
wherep may be complex. It correspondsfic= 2, ¢ (x) = ¢Z"*. Whenp = 0 (the mean value af** with respect
to the Lebesgue measure), for any complex nunabtérere exists points such thatz,filan(ez’”z"x —p)=a
(see [6]). Little is known about the level sets of this series.

2. Preiminaries

Leta, =n~". The sequencfu,} shares the following property, the most useful one to us,
o o0
nli_)moo a, =0, Zl la,| = +o0, Zl lap — apt1] < +o00. (1)
n= n=

It is known [7] that for the golden numbe#, the set of sequences gtdigits coincides with the subshift of
finite type X4 determined by the matriA = (i é) with an exception of a countable set which will be taken off,
because the transformati@ix = Sx (mod 1) is Markovian. Let) : [0, 1) — X4 be the function, which associates
x to its g-digits {e,(x)}, is one-to-one except for a countable set and is strictly increasing wheis endowed
with the lexicographical order.

Any finite or infinite sequence of 0 or 1 which does not contain the string 11 is said to be admissible. For any
admissible sequende,}1<,<n, the g-interval I (e1, ..., ex) is defined to be the set of all € [0, 1) such that
€n(x) =€, for L < n < N. A natural metric on¥' 4 is defined byd (e, n) = =" wheren is the largest integer such
thate; = n; for 1 <i <n. Theg-intervall (e, ..., €,) has a length of ordes " (see [4]).

Let J > 1 be a big fixed integer. We define the ‘killing maﬁ‘. X4 —> Xp by
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T(e1,62,..) =1, 02, ...),

wheren, =0 ore, according tor is a multiple ofJ or not. Notice thaf is Lipschitzian. Then consider the map
T:[0,1) — [0, 1) defined byl’ = = 1T.

Lemma 2.1. Wehavedimy TE < dimg E for any set E C [0, 1).
Proof. It suffices to notice that both and,~* preserve the Hausdorff dimension and thads Lipschitzian. O

Lemma 2.2 (Kaczmarz—Steinhaus [5]puppose that {a,} is sequence of real numbers such that lim,— - a, =0
and Zﬁo 1 lan| = oo and that {p,} and {g,} be two sequences of real numbers such that —A < ¢, < —é and
8 < pn < A for some constants A > § > 0. Then for any real number «, thereisa sequence {R,,} with R, = p,, or
gn suchthat >°°, a, R, =a.

Proof. We may choos®,, inductively. Supposethats, ..., R, are chosen. We tak®, . 1=¢,,+1 if Z?zl anRj>a,
otherwise we tak®,+1 = pp+1. O

Lemma 2.3. Let {e}k>1 € {0, 1} and {ax}x>1 € RY. For any integersn < m, denoting . = —1
the frequency of 1) we have
m

D ar(er—w)| <

k=n+1

m .
j:n-‘rl ej (l .e.

m

m
Z €j Z lax — ax—1l.

j=n+1 k=n+1

Proof. LetN =3""_, 1 €;. We may write

> ak(ek—m:n_im[ Y —mar— Nak}.

k=n+1 ki eg=1 k=n+1
Both sums at the right-hand side may be considered as sum% ofith N(n — m) terms. Notice that for any;
anda; withn <i < j <m we have

m
ai —aj| < Z lax — ax-1| < Z lax — ax—1l.

k=i+1 k=n+1
So, 13 3 prak(er — I <N Y G, 1 lak —ag—1]. O

3. Proof

We have only to prove dith(p, 7,a) > log f(p)/logp for 0 < p < 1/2. Take an infinite number of couples
of integers(J, W) such thatW/(J — 1) < p < (W + 1)/(J — 1). For such a fixed couplé/, W), we construct
a setF; c [0, 1] as follows. LetG/ be the set of thgg-admissible sequencgs,}1<,<s Of lengthJ such that
(i) e2=0,85_1=¢y = 0; (ii) Z 1 Lo, =W. Let G be the set of thgg-admissible sequences, }1<,<, Of
length J such that (iii)e1 =0, ej_1 = e5 = 0; (iv) Z 1 s, W+1 Foranyt >1,letA, =[J(t —1)+1,
Jt—1]NNandA; = ZzeA, a;. We have) ;2 |A;| = oo and lim_, A; = 0. Notice thatW/(J — 1) — p < 0 and
(W+1/(J-1)—p>0.ByLemma 2.2, for ang € R we can find a sequen¢g },>1 with r, = W/(J — 1) —
or(W+1)/(J —1) — p such that

o
ZA["[ =d. (2)
t=1
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DefineG, = G/, or G’} accordingto;, = W/(J —1) — por (W +1)/(J — 1) — p. Then define&G =[];2, G, and
F;tobethesetofalt =3 °°, ¢,/B8" with {¢,},>1 € G. Now for {¢,},>1 € G, we are going to show the conver-
gence of the serieEng\JNai (¢; — p). LetB; = ZieA, ai(e; —W/(J —=1))or ZieA, ai(ei—(W+1)/(J -1))
according tor, = W/(J—1) — por(W+1)/(J —1) — p. Then we havezieA[ ai(e; — p) = B; + A;r;. By
Lemma 2.3, we haviB| < (W 4+ 1) "4 laiy1 — a;|. It follows that} 2 |B,| < +o0. Thus} 2 B, is con-
vergent. We denote its sum by This convergence, together with (2), implies

o0
Y aiei—p)=)_) ailsi—p)=y+a 3)
i=1eN\JN t=1ieA;

According to Lemma 2.2, we can find a new sequefatg} taking in{0, 1} such that

o0
D asi(ey—p)y=a—(y+a). 4)
i=1

Let E; = n~Tn(Fy). By (3) and (4), we geE; C L, thenFy C T L,,.

By Lemma 2.1, we have to estimate difp from below. For 1< i, < CardG; (1 <t < n), let Ujjiy..i, =
[Xigin-ip» Xigig--in T+ ,B_Jn] Wherexiliz...in = Z]{ilé‘k/ﬂk with (g1, €2,...,&,) € H:’=1 G;. The intervaIUil...l-n is
nothing but theg-interval I (ey, .. ., €5,). Sincee;,—1 = 0, all these intervald/;,;,..;, are disjoint. We have the
expressionF; = (1,2, Uilizmin Ui,i,--i,- Define the set functiop by
_ 1
~ (CardG))« (CardG})v»’

mw(WUigigeiy)

whereu,, is the number oG} 's in the sequencgGy, ..., G,} andv, =n — u,. We can exteng: to a Borel prob-
ability measure oiF'y. Write (U, iy..i, ) = |Uigin-i, I** Wheres, = (u, log Carng + v, log CardG}’)/(nJ logpB).
Without loss of generality, we assume Card> CardG’. Then

IogCardG}
M(Uiig-in) < |Uigig-i, | 71098

This inequality remains true for general intervals instead/gf,...,, because the lengths of intervdls,;,...;,

(n being fixed) are betwean /" andc,B8~/" for some constants @ c; < c2. Then by the Frostman lemma, we
get dimy F; > (logCardG))/(J log8). Notice that Cardy;, = (J_SV_W) is a combinatorial number; it is easy to
compute liny (log CardG’)/J =log f(p). SinceL, D E,, we have proved the theorem.
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