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Abstract

Let F be a number field,GF its absolute Galois group, andρ :GF → GL4(C) an irreducible continuous Galois represen
tion. Let �G denote the projective image ofρ in PGL4(C). We say thatρ is hypertetrahedralif Ḡ is an extension ofA4 by the
Klein groupV4. In this case, we show thatρ is modular, i.e.,ρ corresponds to an automorphic representationπ of GL4(AF )

such that theirL-functions are equal. This gives new examples of irreducible 4-dimensionalmonomialrepresentations whic
are modular, but are not induced from normal extensions and are not essentially self-dual.To cite this article: K. Martin, C. R.
Acad. Sci. Paris, Ser. I 339 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Modularité des représentations hypertétraèdrales. SoientF un corps de nombres,GF = Gal(F̄ /F) etρ :GF → GL4(C)

une représentation irréductible et continue. SoitḠ l’image projectiveρ. Nous appellerons une telle représentationhyperté-
traèdralesi Ḡ est une extension deA4 par le groupe de KleinV4. Nous démontrons qu’une représentation hypertétraèd
estmodulaire, i.e., il existe une représentation cuspidaleπ de GL4(AF ) tel queL(s,ρ) = L(s,π). Ceci donne de nouveau
exemples de représentations modulaires qui ne sont pas induites par des extensions normales et ne sont pas ess
auto-duales.Pour citer cet article : K. Martin, C. R. Acad. Sci. Paris, Ser. I 339 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let F be a number field,GF = Gal(F̄ /F ) the absolute Galois group andρ :GF → GL4(C) a continuous
representation. Let̄ρ :GF → PGL4(C) denote the composition ofρ with the standard projection from GL4(C) to
PGL4(C) and let�G be the image of̄ρ. We say thatρ is modularif there exists an automorphic representationπ

E-mail address:kimball@caltech.edu (K. Martin).
1631-073X/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2004.05.003
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of GL4(AF ) such thatL(s,ρ) = L(s,π). We then writeρ ↔ π . Thus at all unramified placesv of F , L(s,ρv) =
L(s,πv) and we writeρv ↔ πv . Denote the restriction ofρ to a subgroup Gal(�F/E) by ρE .

We are interested in the case where�G is an extension ofA4 by a group of order 4. LetCn be the cyclic group o
ordern andV4 be the Klein 4-group. The extensions ofA4 byC4 andV4 can be, for example, easily computed in t
computer algebra package GAP. There are 6 possibilities for�G: C4 × A4, V4 × A4, SL2(F3) × C2, SL2(F3) � C2,
V4�A4 andV4 ·A4, the unique group of order 48 containing bothV4 andA4 as subgroups which is not a semidire
product of the two. In the first four cases, as will be shown below,ρ is necessarily reducible and therefore modu
If ρ is irreducible (so�G = V4 � A4 or V4 · A4) then we will say thatρ is hypertetrahedral. (Note there exis
reducible representationsρ for which �G = V4 · A4.)

Theorem 1.1. LetF be a number field andρ a hypertetrahedral representation ofGF . Thenρ is modular. There
are infinitely many such representations with projective imageV4 · A4 which are not essentially self-dual.

Remark 1. A hypertetrahedral representation (irreducible and 4-dimensional)ρ is monomial, so Artin’s conjectur
is known forρ. However,ρ is induced from anon-normalquartic extensionK (i.e., from a degree one character
Gal(�F/K)) with no intermediate fields, so modularity does not follow from known automorphic induction re

Remark 2. Recall thatρ is essentially self-dualif and only if the image ofρ is contained in GO4(C) or GSp4(C).
The hypertetrahedral representations which are not essentially self-dual give new examples of modular r
tations. Irreducible solvable representations into GO4(C) were shown to be modular in [8]. Also, many cases
known for representations into GSp4(C), such as the symmetric cube of a modular2-dimensional representatio
[4] or when the projective image is an extension ofC4

2 by C5 [6]. But very little is known about non-self-dua
representations.

Let us elaborate briefly on these remarks. Letρ :GF → GL4(C) be a (possibly reducible) representation su
that �G is one of the 6 possible extensions ofA4 by C4 or V4. Let L be the fixed field of ker(ρ), N the fixed field
of ker(ρ̄) andK̃/F the extension corresponding to the quotient groupA4. Let K be a subextension of̃K/F with
Gal(K̃/K) = C3. ThenK/F is a non-normal quartic extension with Galois closureK̃ . Let E be the subextensio
of K̃/F corresponding to the subgroupV4. ThenE/F is a normal cubic extension. Note that Gal(N/E) is a
2-group so Gal(L/E) is the direct product of a 2-group with a cyclic group of odd order. Thus, any irredu
representation of Gal(L/E) has dimension 2j for somej .

Consequently, ifρ is reducible, then it is modular. For any 2-dimensional components are modular b
and [9]. Also, ifρ has an irreducible 3-dimensional constituentτ , thenτE is reducible, i.e.,τ is induced from the
normal cubic extensionE, whence modular by [1]. Hence we will assume thatρ is irreducible.

Now we claim thatρ is induced fromK, i.e., that ρK contains a character. Assume otherwise. Si
Gal(N/K̃) = C4 or V4, any irreducible representation of Gal(L/K̃) has dimension 1 or 2. ThusρK cannot be
irreducible since the restrictionρK̃ to a normal cubic extension is not. So we may assume thatρK is a sum of
two irreducible 2-dimensionals. ThenρK̃ is also sum of two irreducible 2-dimensionals, sayρ = σ ⊕ τ , and
Gal(K̃/F ) = A4 acts transitively on on{σ, τ }. Hence the stabilizer ofσ in A4 is a subgroup of index 2. ButA4 has
no subgroups of index 2, a contradiction. This establishes Remark 1.

The Galois group Gal(K̃/F ) = A4 acts transitively on the 4 distinct characters occuring inρK̃ . This implies that
Gal(K̃/F ) cannot fix Gal(N/K̃) pointwise. However, for each of the four groupsC4 ×A4, V4 ×A4, SL2(F3)×C2
and SL2(F3)�C2, any group element fixes pointwise the normal subgroup of order 4. This shows that�G = V4�A4
or V4 · A4 (assumingρ is irreducible).

Now we want to know whenρ will be not essentially self-dual. Ifρ is induced from a normal extension, th
it is modular by [1]. So we will assume it is not. Then we claim thatρ cannot be of symplectic type. Obser
dimensionality requires that ifΛ2(ρ) contains a character, it contains two (counting multiplicity), which imp
thatρ is induced from a 2-dimensional representation, whence the claim.
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The case where�G = V4 � A4 yields examples of irreducible monomial 4-dimensional representations o
thogonal type, which are modular by [8]. However in the case where�G = V4 · A4, we obtain below irreducible
monomial representationsρ which are not of orthogonal type, whence not essentially self-dual. Thenρ is not a
tensor product of two 2-dimensionals since its image does not lie in GO4(C). Nor is ρ a symmetric cube lift of a
2-dimensional representation because�G is not a subgroup of PGL2(C).

Example 1. Take the groupG192 of order 192 generated by


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1


 ,




−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1


 ,




0 0 −1 0
0 0 0 1
−i 0 0 0
0 −i 0 0


 , and




0 −1 0 0
0 0 −1 0
1 0 0 0
0 0 0 1


 .

As this is solvable, it occurs as a Galois group overQ by a theorem of Shafarevich [7] and has a hypertetrahe
representationρ which is not essentially self-dual and not induced from a normal extension. Such example
of orders 192· k, k = 1,2,3, . . . . This can easily be seen by taking central products ofG192 with cyclic groups.

2. Proof of Theorem 1.1

The proof of modularity is similar to Langlands’ original tetrahedral argument [5], which relied upon norm
cubic base change for GL2 ([5]), the symmetric square lift of Gelbart and Jacquet from GL2 to GL3 [2], and the
structure ofA4. We use normal cubic base change for GL4, the exterior square of Kim from GL4 to GL6 ([3]), and
the structure of�G, in a manner similar to the argument in [6].

As observed in the remarks following the theorem, we may assume thatρ is irreducible and�G = V4 � A4 or
V4 · A4. Let the extensionsL ⊇ N ⊇ K̃ ⊇ K ⊇ F andK̃ ⊇ E ⊇ F be as in the previous section.

Lemma 2.1. The representationsρE andΛ2(ρ) are modular.

Proof. As remarked in the previous section, Gal(L/E) is a direct product of a 2-groupP2 with a cyclic groupC of
odd order. Therefore Gal(L/E) is nilpotent. By a theorem of Arthur and Clozel [1], all representations of nilpo
groups are modular. In particularρE is modular.

We now showΛ2(ρ) is modular. First noteΛ2(ρ) does not contain any characters becauseρ cannot be sym
plectic, as mentioned above. ThusΛ2(ρ) cannot contain an irreducible 5-dimensional representation either.
2-dimensional representation insideΛ2(ρ) is modular by Langlands and Tunnell [5,9].

Now supposeΛ2(ρ) contains an irreducibleτ of dimension 3 or 6. We know that all irreducible representati
of Gal(L/E) have dimension a power of two because Gal(L/E) = P2 × C. ThusτE must be reducible, whenceτ
is induced from the normal extensionE and therefore modular.

Finally, consider the case whereΛ2(ρ) contains an irreducible 4-dimensional representationσ . Since there is
a natural symmetric pairingΛ2(ρ) × Λ2(ρ) → Λ4(ρ), σ maps into GO6(C). The dimension ofσ implies that its
image lies in GO4(C). Henceσ is modular by [8].

Thus all irreducible components ofΛ2(ρ) must be modular, soΛ2(ρ) is also. �
Let us sayρE ↔ Π . We claim thatρE is irreducible. Indeed, the irreducibility ofρ implies that Gal(E/F) = C3

acts transitively on the irreducible components ofρE . This action has order dividing 3. Thus if there is mo
than one irreducible component ofρE , there must be three or a multiple thereof. However dimρE = 4, so that is
impossible. ThereforeρE is irreducible, whenceΠ is cuspidal.

Let δ = δE/F be a non-trivial idele class character ofF ∗NE/F (A∗
E)\A∗

F = Gal(E/F) = C3. Base change resul
[1] tell us that there are precisely three cuspidal representations,π0,π1 = π0 ⊗ δ andπ2 = π0 ⊗ δ2, of GL4(AF )

whose base change toE is Π .
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Lemma 2.2. There is a uniqueπi such thatΛ2(πi) ↔ Λ2(ρ).

Proof. All the representationsΛ2(πi) base change toΛ2(π0 ⊗ δi)E = Λ2(π0)E . They are all distinct becaus
they have distinct central charactersωΛ2(πi)

= ωΛ2(π0)
δ2i . Therefore these are the only representations ofWF

which base change toΛ2(π0)E . We also know thatΛ2(ρ) corresponds to some automorphic representationβ on
GL6(AF ). But thenβE = Λ2(π0)E implies thatβ must equal someΛ2(πi). �

Denote theπi of the lemma byπ . We claim now that in factρ ↔ π . It will suffice to show for all unramified
places thatρv ↔ πv . Sayρv has Frobenius eigenvalues{a, b, c, d} andπv has Satake parameters{e, f, g,h}. We
want to show{a, b, c, d} = {e, f, g,h}. For a diagonal elementD of GL4, we haveΛ2(D) = 1 if and only if
D = ±I . HenceΛ2(ρv) ↔ Λ2(πv) implies {a, b, c, d} = ±{e, f, g,h}. If they are equal, we are done. Assum
therefore

{a, b, c, d} = −{e, f, g,h}. (1)

Now we can use base change toE. In our projective image�G, any element cubed lies inside the normal subgr
of index 3, Gal(N/E). Thus any element ofG(L/F) cubed lies inside Gal(L/E). In particularFr3

v ∈OEw , where
w is a prime ofE abovev andFrv is the Frobenius. Thenρv,E ↔ πv,E implies{a3, b3, c3, d3} = {e3, f 3, g3, h3}.
Combining this with (1) yields,{

a3, b3, c3, d3} = { − a3,−b3,−c3,−d3}. (2)

Without loss of generality, assumea3 = −b3 and c3 = −d3. Then eitherb = −ζ3a or d = −ζ3c, for other-
wise a = −b, c = −d which would imply {a, b, c, d} = {e, f, g,h}. Let us sayb = −ζ3a. Then ρ(Frv) ∼
diag(a,−ζ3a, c, d) so ρ̄(Frv) ∼ diag(1,−ζ3, c/a, d/a) is an element of order divisible by 6 in�G = Im(ρ̄) ⊆
PGL4(C). But �G has no elements of order 6, a contradiction! Thereforeρ is modular.
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