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Abstract

Let F be a number fieldG  its absolute Galois group, and G p — GL4(C) an irreducible continuous Galois representa-
tion. Let G denote the projective image pfin PGL4(C). We say thap is hypertetrahedralf G is an extension ofi4 by the
Klein group V4. In this case, we show thatis modular, i.e., p corresponds to an automorphic representatiasf GL4(A )
such that theii.-functions are equal. This gives new examples of irreducible 4-dimensioobmialrepresentations which
are modular, but are not induced from normal extensions and are not essentially sefbaitalthisarticle: K. Martin, C. R.
Acad. Sci. Paris, Ser. | 339 (2004).
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Résumé

Modularité desreprésentations hypertétragdrales. SoientF un corps de nombre&; r = Gal(F/F) etp: G — GL4(C)
une représentation irréductible et continue. $bitimage projectivep. Nous appellerons une telle représentatiyperté-
traédralesi G est une extension dé¢, par le groupe de Kleis. Nous démontrons qu’'une représentation hypertétraédrale
estmodulaire i.e., il existe une représentation cuspidalele GLy(A ) tel queL(s, p) = L(s, ). Ceci donne de nouveaux
exemples de représentations modulaires qui ne sont pas induites par des extensions normales et ne sont pas essentiellem
auto-dualesPour citer cet article: K. Martin, C. R. Acad. Sci. Paris, Ser. | 339 (2004).
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1. Introduction

Let F be a number fieldG r = Gal(F/F) the absolute Galois group antt G — GL4(C) a continuous
representation. Let: G — PGL4(C) denote the composition gf with the standard projection from GLC) to
PGL4(C) and letG be the image op. We say thap is modularif there exists an automorphic representation
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of GL4(A ) such thatL(s, p) = L(s, ). We then writepo <> 7. Thus at all unramified placasof F, L(s, p,) =
L(s, m,) and we writep, <> ,. Denote the restriction gf to a subgroup G&F /E) by pg.

We are interested in the case whérés an extension ofi4 by a group of order 4. Lef,, be the cyclic group of
ordern andVy be the Klein 4-group. The extensionsAf by C4 andV, can be, for example, easily computed in the
computer algebra package GAP. There are 6 possibilitie§ f@fs x A4, V4 x Ag, SLa(F3) x C2, SLa(F3) x Ca,
Vax Ag andVy - Ay, the unique group of order 48 containing bathand A4 as subgroups which is not a semidirect
product of the two. In the first four cases, as will be shown be}ois,necessarily reducible and therefore modular.
If p is irreducible (SOG = V4 x A4 or V4 - A4) then we will say thap is hypertetrahedral (Note there exist
reducible representatiopsfor which G = V4 - A4.)

Theorem 1.1. Let F be a number field angd a hypertetrahedral representation 6fz. Thenp is modular. There
are infinitely many such representations with projective imégeA 4 which are not essentially self-dual.

Remark 1. A hypertetrahedral representation (irreducible and 4-dimensipriglinonomial, so Artin’s conjecture
is known forp. However o is induced from anon-normaljuartic extensioX (i.e., from a degree one character of
Gal(F/K)) with no intermediate fields, so modularity does not follow from known automorphic induction results.

Remark 2. Recall thatp is essentially self-duaf and only if the image op is contained in G@Q(C) or GSp(C).

The hypertetrahedral representations which are not essentially self-dual give new examples of modular represen
tations. Irreducible solvable representations intos&) were shown to be modular in [8]. Also, many cases are
known for representations into GEE), such as the symmetric cube of a modwadimensional representation

[4] or when the projective image is an extensionccgf by Cs [6]. But very little is knavn about non-self-dual
representations.

Let us elaborate briefly on these remarks. heGr — GL4(C) be a (possibly reducible) representation such
thatG is one Qf the 6 possible extensionsAf by C4 or V4. Let L be the fixed field of kep), N the ﬂxed field
of ker(p) and K / F the extension corresponding to the quotient grdupLet K be a subextension df / F with
Gal(K/K) = C3. ThenK /F is a non-normal quartic extension with Galois closkreLet £ be the subextension
of K/F corresponding to the subgrodfy. Then E/F is a normal cubic extension. Note that GéJE) is a
2-group so GAlL/E) is the direct product of a 2-group with a cyclic group of odd order. Thus, any irreducible
representation of GalL/E) has dimension2for some;.

Consequently, ifp is reducible, then it is modular. For any 2-dimensional components are modular by [5]
and [9]. Also, if p has an irreducible 3-dimensional constituenthentg is reducible, i.e.r is induced from the
normal cubic extensio®t, whence modular by [1]. Hence we will assume thas irreducible.

Now we claim thatp is induced fromKk, i.e., that px contains a character. Assume otherwise. Since
GaI(N/I?) = C4 Or Vg, any irreducible representation of qaayl?) has dimension 1 or 2. Thysgy cannot be
irreducible since the restrictiopg to a normal cubic extension is not. So we may assumedgaits a sum of
two irreducible 2-dimensionals. Thesg is also sum of two irreducible 2-dimensionals, say= o ® 7, and
Gal(K /F) = A4 acts transitively on oo, 7}. Hence the stabilizer aof in A4 is a subgroup of index 2. But4 has
no subgroups of index 2, a contradiction. This establishes Remark 1.

The Galois group GaK / F) = A4 acts transitively on the 4 distinct characters occuringn This implies that
Gal(l?/F) cannot fix GeﬂN/I?) pointwise. However, for each of the four groupgx Ag, V4 x A4, SLp(F3) x C2
and Sl (IF3) x C, any group element fixes pointwise the normal subgroup of order 4. This shov@ thdh x A4
or Va4 - A4 (assumingp is irreducible).

Now we want to know whem will be not essentially self-dual. I§ is induced from a normal extension, then
it is modular by [1]. So we will assume it is not. Then we claim thatannot be of symplectic type. Observe
dimensionality requires that ifi?(p) contains a character, it contains two (counting multiplicity), which implies
that p is induced from a 2-dimensional representation, whence the claim.
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The case wher& = V4 x Ay yields examples of irreducible monomial 4-dimensional representations of or-
thogonal type, which are modular by [8]. However in the case wiiete V4 - A4, we obtain below irreducible
monomial representationswhich are not of orthogonal type, whence not essentially self-dual. phismot a
tensor product of two 2-dimensionals since its image does not lie if(GONor is p a symmetric cube lift of a
2-dimensional representation becagsis not a subgroup of PGI(C).

Example 1. Take the groupiz 192 of order 192 generated by

-1 0 O -1 0 O 0O 0 -1 0 0O -1 0 O
0 -1 0 0 0 1 0 O 0 0 0 1 and 0O 0 -1 0
0O 0 1 0}’ 0 0 -1 0}’ —-i 0 0 0}’ 1 0 0 O
0O 0 O 0O 0 O 0O —-i 0 O 0O 0 O

As this is solvable, it occurs as a Galois group o@eby a theorem of Shafarevich [7] and has a hypertetrahedral
representatiop which is not essentially self-dual and not induced from a normal extension. Such examples exist
oforders 192k, k=1, 2,3, .... This can easily be seen by taking central producis gf, with cyclic groups.

2. Proof of Theorem 1.1

The proof of modularity is similar to Langlands’ origil tetrahedral argument [5], which relied upon normal
cubic base change for GL([5]), the symmetric square lift of Gelbart and Jacquet fromp®&.GL3 [2], and the
structure ofA4. We use normal cubic base change forsGthe exterior square of Kim from Glto GLg ([3]), and
the structure ofz, in a manner similar to the argument in [6].

As observed in the remarks follgwing the theorgm, we may assume tisatreducible andz = V4 x A4 or
V4 - Ayg. Letthe extensions 2 N 2 K 2 K 2 F andK 2 E 2 F be as in the previous section.

Lemma 2.1. The representationsz and A%(p) are modular.

Proof. Asremarked in the previous section, @alE) is a direct product of a 2-groupy with a cyclic groupC of
odd order. Therefore Gdl/E) is nilpotent. By a theorem of Arthur and Clozel [1], all representations of nilpotent
groups are modular. In particulag is modular.

We now showA2(p) is modular. First note1?(p) does not contain any characters becgusannot be sym-
plectic, as mentioned above. Thug(p) cannot contain an irreducible 5-dimensional representation either. Any
2-dimensional representation insidé(p) is modular by Langlands and Tunnell [5,9].

Now supposei?(p) contains an irreducible of dimension 3 or 6. We know that all irreducible representations
of Gal(L/E) have dimension a power of two because(GdFE) = P, x C. Thustg must be reducible, whenae
is induced from the normal extensiéghand therefore modular.

Finally, consider the case wher€?(p) contains an irreducible 4-dimensional representasioBince there is
a natural symmetric pairing?(p) x A2(p) — A*(p), o maps into GQ(C). The dimension oé implies that its
image lies in GQ(C). Henceo is modular by [8].

Thus all irreducible components @f?(p) must be modular, sd?(p) is also. O

Let us sayg <> IT. We claim thatog is irreducible. Indeed, the irreducibility @fimplies that GalE/ F) = C3
acts transitively on the irreducible componentspgf. This action has order dividing 3. Thus if there is more
than one irreducible component pf, there must be three or a multiple thereof. However gim= 4, so that is
impossible. Thereforgg is irreducible, whencéI is cuspidal.

Lets = 6/ r be anon-trivialidele class characterfof)g, r (A})\A}, = Gal(E/ F) = C3. Base change results
[1] tell us that there are precisely three cuspidal representatigns; = 7o ® § andrs = 7o ® 82, of GL4(Af)
whose base change is I7.
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Lemma 2.2. There is a uniquer; such thatA2(r;) <> A2(p).

Proof. All the representations\?(r;) base change tm?(no ® 8')g = A%(mo)g. They are all distinct because
they have distinct central charactesgz ;) = o Az(no)az’. Therefore these are the only representation$Vef

which base change ta2(rg) . We also know thati?(p) corresponds to some automorphic representation
GLg(Ar). Butthengr = A?%(mo) ¢ implies that must equal soma?(w;). O

Denote ther; of the lemma byr. We claim now that in facp <> 7. It will suffice to show for all unramified
places thap, <> m,. Sayp, has Frobenius eigenvalués, b, ¢, d} andr, has Satake parametdes f, g, h}. We
want to show{a, b, ¢,d} = {e, f, g, h}. For a diagonal elemend of GL4, we haveA?(D) = 1 if and only if
D = +1. HenceA?(p,) < A%(w,) implies {a, b, c,d} = +{e, f, g, h}. If they are equal, we are done. Assume
therefore

{a,b,c,d}y=—le, f, g, h}. (1)

Now we can use base changeHoln our projective images, any element cubed lies inside the normal subgroup
ofindex 3, Ga{N/E). Thus any element af (L /F) cubed lies inside G&L/E). In particularFrv3 € Og,, , Where

w is a prime ofE abovev and Fr, is the Frobenius. Thep, ¢ < 7, g implies{a®, b3, ¢, d3} = {3, f3, g3, h°).
Combining this with (1) yields,

a3 b3, 3, a3} = - a® —b3, -3, —a®). )

Without loss of generality, assume = —b3 and ¢ = —d3. Then eitherb = —3a or d = —¢ac, for other-
wise a = —b, ¢ = —d which would imply {a, b, c,d} = {e, f, g, h}. Let us sayb = —¢3a. Then p(Fry) ~
diagla, —¢aa, ¢, d) so p(Fry) ~ diag1, —¢3, c/a,d/a) is an element of order divisible by 6 i@ = Im(p) C
PGL4(C). But G has no elements of order 6, a contradiction! Therefoi®modular.
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